Ко второму классу можно отнести процессы в открытых системах, в ходе которых из физического хаоса рождаются структуры — диссипативные структуры, о которых так много говорится в настоящей книге Пригожина и Стенгерс. Напомним, что сам термин «диссипативные структуры» был введен И. Пригожиным. Возникновение диссипативных структур в ходе временной эволюции в открытых системах через последовательность все более упорядоченных диссипативных структур характерно для процессов самоорганизации.
Проблема самоорганизации в различных системах не является, разумеется, новой, о чем неоднократно упоминается в книге «Порядок из хаоса». Различным аспектам этой проблемы посвящено много выдающихся работ. Особое место среди них занимают работы Чарлза Дарвина о естественном отборе в процессе эволюции.
Одно время бытовало мнение, что существует явное противоречие между теорией Дарвина и вторым законов термодинамики. Действительно, но Дарвипу, в процессе биологического развития происходит усложнение структур и степень упорядоченности возрастает. Согласно же второму закону термодинамики, в любой замкнутой системе в процессе эволюции степень хаотичности (энтропия) возрастает. Это кажущееся противоречие отпало с осознанием того факта, что существуют два принципиально различных (указанные выше) процесса эволюции: процессы в замкнутых системах ведут к тепловому равновесию (физическому хаосу, в нашей терминологии), а процессы в открытых системах могут быть процессами самоорганизации. При этом возникает необходимость введения количественной характеристики степени упорядоченности различных состояний открытых систем. Это необходимо для сравнительной оценки степени самоорганизованности — упорядоченности различных состояний, выбора пути наиболее эффективной самоорганизации (см. об этом гл. 9 настоящей книги).
Из изложенного следует, что необходима единая теория, которая бы естественным образом описывала два выделенных класса процессов. Она должна быть эффективной на всех уровнях статистического описания: кинетическом, гидродинамическом, диффузионном, термодинамическом. Такая теория, благодаря усилиям многих исследователей, в частности И. Пригожина и представителей созданной им Брюссельской школы, успешно развивается. Она позволяет решать очень широкий круг задач в различных областях знания. Ее можно назвать «статистической теорией неравновесных процессов». Из обширного материала этой теории мы отметим лишь некоторые идеи и результаты, составляющие основу наших представлении о структуре хаоса и турбулентном движении.