Соотношения между числами в последовательности Фибоначчи
Три последовательных числа в последовательности Фибоначчи ведут себя предсказуемым образом. Выберем три любых последовательных числа и перемножим два крайних. Затем сравним результат с квадратом среднего числа. Разница всегда будет одинаковая, на единицу больше или меньше в зависимости от выбора чисел. Например, для чисел 3, 5 и 8 имеем 3∙8 = 5>2 — 1, а для чисел 5, 8 и 13 получим 5∙13 = 8>2 + 1.
В общем случае это соотношение между числами в последовательности Фибоначчи записывается так:
а>n>2 - а>n-1∙а>n+1 = (-1)>n-1
Если мы применим это свойство геометрически, мы обнаружим нечто странное. Нарисуем квадратную решетку 8 на 8 (она будет содержать 8>2 = 64 маленьких квадрата). Затем разделим большой квадрат на четыре части, как показано на рисунке на следующей странице. Далее мы переставим части, словно детали головоломки, и построим из них прямоугольник со сторонами 5 и 13. Но тогда он будет содержать 13∙5 = 65 маленьких квадратов! Откуда взялся дополнительный квадрат? Чтобы разобраться в этой загадке, мы должны посмотреть на углы, образуемые линиями, которыми мы разделили наш квадрат. Они не совсем равны, и когда мы строим из кусочков новую фигуру, они не образуют идеальный прямоугольник, оставляя крошечные зазоры. Эти небольшие зазоры в сумме дают дополнительную единицу площади, которая, казалось бы, появилась ниоткуда.
![](data:application/octet-stream;base64,/9j/4AAQSkZJRgABAQEASABIAAD/2wBDABALDA4MChAODQ4SERATGCgaGBYWGDEjJR0oOjM9
PDkzODdASFxOQERXRTc4UG1RV19iZ2hnPk1xeXBkeFxlZ2P/2wBDARESEhgVGC8aGi9jQjhC
Y2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2P/wAAR
CAGdAZADASIAAhEBAxEB/8QAGwABAQEAAwEBAAAAAAAAAAAAAAUEAgMGAQf/xABVEAAABQIA
BQsPCAcIAwEBAAAAAQIDBAURBhIVITETFDZUVXSTlLLR0hYiMjM0NUFRYXFyc4GRsSMkU5Kh
o7PTQkRkgqLBwiUmQ2JjdYPDRVKEZfD/xAAUAQEAAAAAAAAAAAAAAAAAAAAA/8QAFBEBAAAA
AAAAAAAAAAAAAAAAAP/aAAwDAQACEQMRAD8A/QAAAAAAAAAAAAAAAABJjVvXTKHo9OmuNOFd
KySgiMvaodh1R0v/ABU4/MlHSHHBoiTg7TyL6FJioAmnVXS/8VP9iUdIdT9d1vqWq02cnVnC
bQWKjOo9Bdl5BXEmvdnS9/t/BQDnlZ3cmf8AVR0h9Oqul/4qf9VHSFIAEzKzu5M/6qOkOsq7
eSqOVMn6qlBOGnERmSZmRH2XjIxXExov7zSz8UNkv43QDKzu5M/6qOkGVndyZ/1UdIUwATMr
O7kz/qo6QzNYStPT3oLdPmnJZSSlt4qLkR2z9l5SFwePnGVOwherJFZKZqYsgy+jWy1Yz8ys
/tAXcqu7kz/qo6QZWd3Jn/VR0hSH0BJfrao7C3naXPS22k1KPERmIv3hyTV3FpJSaVPMjK5d
YjpDsr3eKf6hfwMa43czXoF8AGHKzu5M/wCqjpBlZ3cmf9VHSFMAEh6umxqeq0uenVFkhPWI
zmeguyHZlZ3cmf8AVR0h9rJXKD5JjfxMUgEzKzu5M/6qOkGVndyZ/wBVHSFMAEgq4ZyVRypk
/VUoJw04iMyTMyI+y8hjsys7uTP+qjpA3snkbza5bgpgJmVndyZ/1UdIMrO7kz/qo6QpgAkM
1w3yWbdLnqJCzQrrEZjLT+kOzKru5M/6qOkOVG7XL327yhRATcqu271T/qo6Q+ZWd3Jn/VR0
hTABmp8xuoQm5TJLJDhHYllYysdjv7hpEnBfvBH86+WoVgAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAEvBq/U7T7lY9RT8BUEvBkiLBynkX0KRUABIr/bKVmLu9vkqFcSK+fylJ8s9HJUArgAAA
mNF/eeUf7Gzy3RTE5ki6o5h+HWjHLdAUQAAARThIqLdehuWxXnyTfxHqDVj9h5xaE+m93Vbf
afwGgHTgxOcm0ZrXGaUwZsPl4SWk7Hf7D9orDz6L0vC9aDO0aqt4yS8BPILPm8F05/KZD0AD
DWyNVEnEk7HqC/gY0xu5mvQL4DJXu8U/1C/gY1xu5mvQL4AO0AABNrWiDvxv+YpCbWtEHfjf
8xSAAAAExvZPI3m1y3BTExvZPI3m1y3BTAAAAE6jdrl77d5QoidRu1y99u8oUQAAABJwYzUC
NcyPs9HpqFYSsGO8Mfzr5ahVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAedoB1bIULUkQjb1FO
LjLXe3gvmFJKqvY8ZuDfwWWvmHDBo74O08y+gT8BTATiVWb9c3At5Fr5hLrSqrj0zVUQ+7kY
uKtWmytOYelEiv8AbKTv9HJUA0EqrWztwr+Ra+YMarY3a4WL6a7/AAG8AGHGqv0cP66uYTWT
qvVDLMm4eNrZm91qtbGdtbN5/sHoBOY2Rzd6Mct0Byxqtcvk4VvD8ovmHzGrFys3Bt4evXzC
gACeSqvjZ24OLb6Rd7+4YYB1XXdVxG4eNror4y1WvqTfk8VvbcXhPpvd1W32n8BoBIwjjVZ+
nFINuITsJZSWzbWo1XTnMtHhK4pQZlRnQWJTSIeI8gll16s1y8wqGRGRkZXI9JGIODV4EmfR
VkZJiuarHv4WV5yIvHY7kA+1tVVyJO1RuHi6iu+KtWi3mGuMqqa2a+Th9gX6avF5hzr3eKf6
hfwMa43czXoF8AGUlVXwtwvrq5h9xqr9HD+urmG4AECsHU7wcZuHbXbehatOfyCgaqtms3C9
ri+YcK1og78b/mKQDBjVa/a4VvWL5h8JVXtnbg39YvmFAAHnkHVeqR+zcPG1o3jEa1Wtjrt4
NOkU8aq/Rw/rq5h1N7J5G82uW4KYCfjVfGP5ODi+Dr13+A5Y1V+jh/XVzDcACDSDqmpy8RuH
bXbulav/AGz+AUMaq/Rw/rq5hwo3a5e+3eUKIDApVWt1rcK/lWvmHw1VfF61uDfyrXzCgPgC
VguRlg/FxrY1lXtovjHcVhKwYz0CKZ3z4x5/SMVQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEv
BnY3TraNbo+AqCXgxsapu90fAVAAR6/22k7/AEclQsCPX+20nf6OSoBYAAABNYL+8c3yxGOW
6KQmsHfCOb5IrHKdAUgAAAT6b3dVt9p/AaFAT6b3dVt9p/AaAUB5/CC9PqVPrKLEhtetpJ+N
pZ5jPyEqx+0egGWpwkVGnSIbnYvINN/EfgP2GA6a93in+oX8DGuN3M16BfAedizFy8CJSXzP
XMZlyO+R6SWgrfCx+0eijdzNegXwAdoAACbWtEHfjf8AMUhNrWiDvxv+YpAAAACY3snkbza5
bgpiY3snkbza5bgpgAAACdRu1y99u8oUROo3a5e+3eUKIAPh6B9Hw9ACTgqd8HIZnpNJ8oxX
EjBXY5C9E+UYrgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPMYP0+oOUGAtutPtIUwk0oSw0ZJK
2i5puKOTala2XZHn1u10RywZ2N03e6PgKgCTkyp7vSeLs9ETK1AnocphLrLzmNNQSTUw0WKe
KrPmT/8A1x6kR6/22k7/AEclQDkdNqRn3+kF5Cjs9EMm1O5f29I9sdroisACSdNqRn39kF/8
7XRGFmn1A6/LSVaeJRR2TNWoNXMjU5Yux8Fj9/kHpBNj7I529WOU6A4ZNqW7r/F2uiPmTanu
9I4u10RWABLyfUd2nuAb5hgp9PqJzKkRVp9JpkkSjJhrrz1Js7n1viMizeIejE+m93Vbfafw
WgHXk+pXvlp7zag3zD5k6pWP+3H8/wDoNZv4RVAB4GsxJtJnS2VVReo1KO44ajYR17iCzpMi
sRXT4S0j0kenVM4rV648R4pZ0x2i8HlIx1YbQNfYNyFJzORy1ZB+K2n7LitTn25VOjPtHdDj
SVJ9pAMhU6pEVstvn5TYa6I45Mqe70ni7PRFYAHm6tAqKdZY1ZdWRymyK7DdyPPn0Chk+pWt
lt7z6g10RyrWiDvxv+YpAJeT6ju09wDfMGT6lu09wDfMKgAPNtQZ5YQPoyw8ayiNmazYbuZY
682i2bP7xvydU7Z649e/gjtcw5tp/vJJV+yNF/G4KQCSmm1MjudekH5DjtdEfcnVK98uP+bU
GuiKoAPN0qn1BSJJorb6bSXCMijtZzxtPYjdk2p5jOuv+Yo7VuSO2jdrl77d5QogJOTKnu9J
4uz0R9OnVIy7+Plb9naz/wAIqj4egBJwU2Nwrnc8Q8/j64xXEjBXY5C9E+UYrgAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAJeDOxqm73R8BUETBuZFRg7TkqkspUUdBGRuFcswp6+h7bY4QgGgR
6/22k7/RyVChr6HttjhCEmuzIq3aViyWTtOQZ2cLMWKoBeAZ9fQ9tscIQa+h7bY4QgGgTY+y
OdvVjlOjVr6HttjhCE5ibFLCGao5LNjisER6oWfrnecveAsgM+voe22OEINfQ9tscIQDQJ9N
7uq2+k/gtDRr6HttjhCGCnTIpTaqZyWSJUojI9ULP8i0X8gFcBn19D22xwhBr6HttjhCAZ69
3hn30agv4GJeCZnBVLorizPW6ieYv4Wl5yt47Hcj8421ybFVRJyUymTM2FkRE4WfMJlWlRoU
yk1dqQ0Zt2jSCSsjM2leE8/6J5/aA9UAz6/h7bY4Qg19D22xwhAMta0Qd+N/zFIRqxNiq1ji
yWDtLbM/lC8oo6+h7bY4QgGgBn19D22xwhBr6HttjhCAZmi/vHKO36ozy3RREZqZFLCKUs5L
OKcRkiPVCz2W7zkKOvoe22OEIBoAZ9fQ9tscIQa+h7aY4QgGej9rlXK3zt3lCgJNKmREtyfn
TOeS4fbC/wDYbtfQ9tscIQDQPh6B0a+h7bY4Qh8OdDt3WxwhAMOCuxyF6J8oxXEjBTPg3Ct/
6HyjFcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAwcplPdwep63IMZa1MIM1KaSZmdvMKWSKbu
dE4FPMOjBnY1Td7o+AqAMWSKbudE4FPMJVcpsBtylkiDGTjTkJVZpJXLFVm0D0Qj1/ttJ3+j
kqAa8kU3c6JwKeYMkU3c6JwKeYbQAYskU3c6JwKeYT2KXTzwgmoODFNCYzBknUU2IzU7c9Hk
L3C6JsfZHO3qxynQHbkim7nROBTzBkim7nROBTzDaADFkim7nROBTzDBTKXAVKqiVwIpkmXZ
JG0k7FqTZ+Lyn7xcE2k211Vbbc/6mwHbkim7nROBTzBkim7nROBTzDaACJXKXT0USctECKlS
WFmRkykjI7eYdjtCp0ulKY1lGQbrOLjpaSRpMy03sO+vd4p/qF/AxrjdzNegXwAQcGI0KbR0
FJp8XXUdRx3yNlN8dObPm8Vj9orZIpu50TgU8wmJvS8LlJM7Rqq3jJK+YnkFn810+8yHoAEK
sUuno1liwIqby2yOzKc5Z/IKGSKbudE4FPMOurqxTg5tMtBfYYogMWSKbudE4FPMGSKbudE4
FPMNoAIbVLp54QyUHBimgojRknUU2I8dy56PIXuG/JFN3OicCnmHS0X95pZ/sbPLdFMBiyRT
dzonAp5gyRTdzonAp5htABEpVLpq25JnAinaS6WdlPgV5huyRTdzonAp5hwo53alZrfO3eUY
oAMWSKbudE4FPMB0im273xOBTzDaPh6AEnBQrYNwiLMRIPlGK4kYK7HIXonyjFcAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAABLwZ2NU3e6PgKg81g9ViaoEBvWM9eKwksZDBmR5vAYo5aLc6o8X
MBUEivkZu0mxX+fo5Khzy0W51R4uYmVqrJW7TPmM5OLNQfXMGV+tVmLxnnAenAS8tFudUeLG
GWi3OqPFzAVBNj7I529WOU6OOWi3OqPFzGBirpKvzF6xnneMyWKTB3KynM5l4s/2GA9GAl5a
TudUeLmGWi3OqPFzAVBMpHdVV35/1Nj5lotzqjxcxgplWSiRUj1jPVjy79awZ2+TQVj9wD0Y
CXlpPgp9RP8A+Ywy0W51R4uYDnX1YlCnK8TKvgNzOZlHokINarCV0aYk6fUCJTSiuqOZEWYa
maykmG/7PqPYl+rn4gHHCqI5IpCn2O6Yayksn/mTnt7SuKMCW3PgsS2Tu28gll7fAMZ1lJln
p1RO/g1sYiYPVUqa5LpKoU3FZcN2OgmTNRNKO+cvId8/lAXK0rFXTSPQqYgv4VH/ACFMebq1
XSpdPM4E5OLLSfXMGV+tVoFDLRbnVHi5gKgCXlotzqjxcwy0W51R4uYDk1sll7zZ5bopDzjV
WSWEElzWM7rojRYuoHcrLc8Ht+wxvy0W51R4uYCoAmFWUmfe+ol545j5lotzqjxcwHOjdql7
7e5RiiPO0mrpQ3J+YT1XlOn1sczt1w3ZaLc6o8XMBUHw9AmZaLc6o8XMDrSbH/Z1R4uYDhgr
scheifKMVxIwUO+DcE/Ggz+0xXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAS8GdjdN3uj4CoJe
DOxqm73R8BUABJrxXdpWa/z5HJUKwl1ojN6mWO3zxN83+VQCoAAACbH2Rzt6scp0UhNj7I52
9WOU6ApAAAAmUnuqq78/6mxTEykd1VXfn/U2ApgAAMFcMios0zOxair4DYz2lHokJ+Emx6f6
lQoNdqR6JAOY8/hESqfUafWm8yGl63kn42lmVjPyErP7R6AZqjDRUKfIiOdi8g0X8V/CAyVq
+q0u1u7U8lQqDykCY5KpdIbfO8mLPKO8XiUlKy+Fj9o9WAAAAJrWyWXvNnluikJrWyWXvNnl
uikAAAAJ1G7VK329yjFETqN2qXvt7lGKIAPh6DH0fD0GAmYNISigQ0pKxEj+ZioJeDZmdAhm
orHiaPaYqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJeDOxum73R8BUHlKBg1TJNCgvOofNbjK
VKMpDhFcy8RHYhQ6lKT9HI4050gFsS6zfXFLsWbXib/VUOjqTpP0cjjTnSE+qYMUxp2BiIfL
HlJSr5ws82Krxnm0eAB6sBE6k6T9HI4050gLBSlFoRIL/wCpzpALYmx9kU7esflOjMrBWlKz
mmSZ+PXTnSGBnBimHXJjWLIJKGGVptIXcjNThHnvf9EgHqgEQ8FaUo7miQZ+M5TvSDqTpPgR
II/GUpzN/EAtibSe6qrvz/qbGRGCVKTfGKUu/hVJc/kYxUzBmmOSKilaHzJuViptIcKxYiD8
B585npAeqAROpSk/RyONOdIDwUpJnc25BnvpzpANGEex6f6lXwFBrtSPRIeZr2DdNZoktxCZ
GM20ZpxpLiiI/MZ2GxGC1LW0g1IkmeKWmU50gF0BEPBWlHpRIPzynekHUnSfo5HGnOkAmVFh
UDDKGTaS1vUXkuqz9i42lRHbzkovaPXDyVXwWpiHqfiFITjySQfzhZ5jSo81zO2ghuLBCmFm
NUsy8RyV84C+AhJwSpRKI7StGjXLnv0j71J0ozuaJOjRrpzpANTWyWXvNnluikPKJwYpq67I
YLXKUIjNLLFkLvc1OEee/kIUE4LU5KSLGmH5Tluc4C2Ai9S1MuRmUo1F4Tlu35Q+9TFN8Urj
bvSAaKN2qVvt3lGKI8tSsGaY63INSH7pkuJK0hwsxKsWgxqk4OUVlo3ZK3m0FpW5McIi9pqA
Xx8PQY8NqdElKU3RqfUKi4WbGRIcQ2R+VZqHONgZLfM3J852K1bNHjvKX71KPT5iAeiwYv1P
Q7kRHiHo85iqJWC5WwbgEWgmSFUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABLwZ2NU3e6PgKgl
4MlbBum73R8BUABKrV9cUq2jXhX+ooVRKrV9c0q2jXhX+ooBVAAABNj7Ip29Y/KdFITY+yKd
vWPynQFIAAAEykd1VXfn/U2KYmUjuqq78/6mwFMAABMwk2PT/Uq+AoNdqR6JCfhJsen+pV8B
Qa7Uj0SAcwAAEys9tpm/U8hYpiZWe20zfqeQsUwAAABNa2Sy95s8t0UhClVKFTcIZTk6S2wk
4bNsc859e7oLSY4ZdnVAzTRqW4tJ6JMu7TfnItKi9wC+JE7CWmw3NRS6qVIPQxGTqi/s0e0Z
+p+XULnXKm7IQr9Wj/JNEXiO2dXtMV4NPiU5nUoUdthHiQm1/OfhAecpq69UGnyhpZprC5Dh
m48nHdIzVoJGgreUUWMF4OrFIqC3qlILPjylYyS8yexIvJYaqN2qXvt7lGKIDihCUJJKEklJ
aCIrEQL7BXmHIcV9grzAJuDJ3wdgn42iFQSsGNjkD1RCqAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAD4egwE3BtOLg3TSPazZ/wkKY8/QaPFcoNPWpcy647ajxZjySuaSPMRKsXsG/IkT6Sbx5/p
gKIlVruqk78LkKHZkSJ9JN48/wBMTKvSIrcmmElcs8aWSTxpjp/oq0XVmPNpIB6QBOyJE+km
8ef6YZEifSTePP8ATAURNjX6o599rR7fWdH3IkT6Sbx5/pifHpMVVfnN6pMsiOwfdjxHczc8
ONc9BadGfxgPQgJ2RIn0k3jz/TDIsT6Sdx5/pgKImUnuqq78/wCpscsixPpJ3Hn+mJ9LpEVc
ipEa5nWS8UrTHi/w0HnsrOefSYD0ICdkWL9JO4+/0wyJE+km8ef6YDjhHsen+pV8BQa7Uj0S
EGv0iK1Qpq0rmGaWlGWNMeUXuNVjG1qixNSR8pN7Ev157pgKgCdkSJ9JN48/0xKqL9BpzhNO
zJrj55iZZmvrWZ+Yl5vaAp1nttM36nkLFB11tltTjq0toSV1KUdiL2jw1Qiz57sJEeLNpzLk
giQ/KmuLXfFPPiY+bwiyzgdDW0SarKmVNZeF99RJSfkIjze0zAdzmFEV1Sm6Ww/U3SOxlHQe
IR+VZ5iHAo2EFTIjlymqWyelqMWO6ZeI1nmI/KQ2M4P0+O0TTGu2my0JRNeIi9hLHPIkT6Sb
x5/pgJtMocCFhFIJLRvOJjNOas+eqLNZqcI1XPQZkktFh6MQGqRGy/JRjzLJismRlMevnW54
ca/g0c43ZEifSTePP9MBRATsiRPpJvHn+mGRIn0k3jz/AEwCjdqlb7e5RiiPP0mjxVtybrmF
aU6XWzHi0K8ivtG/IkT6Sbx5/pgKI4r7BXmGDIkT6Sbx5/pjiuiRMRXyk3Rt5/pgOODGxyB6
ohVErBjY5A9SQqgAAAAAAAAAAAAAAAAAAAAAAAAAAAD4egfR8AT8HdjtM3q1ySFETsHdjtM3
q1ySFEAEmt91UnfhchQrCTW+6qTvwuQoBWAAABLiH/eWpeSPH+LoqCVE2S1Le8f4ugKoAAAJ
lI7qqu/P+psUxLpi0tv1da1ElJTLmajsRfJNgKgCHIwogpcNmCl6ovl+hFRjkXnVoIdep4RV
MyNx1mkRz0obs68ZeEjUfWl7NADRhVJYj0Cal55ttS2jJJKURGo/IXhGVvCGROaSiiUx+T1p
Fq7/AMk0WbTc85+YhnquDVNhUWfJNtcqVqKj1xJXqi7+PPmI/MQ9OzmZR6JAIR0So1JN61VF
kg85xoXybfmNXZKL3CpT6XBpjeJCitsl4TSXXH5z0n7RsABMrPbaZv1PIWKYmVnttM36nkLF
MAAAAT2dkEzerHKdFAT2bdUEy21WOU6KAAAAAn0crNSs/wCtO8oxQE2i9pl77e8P+cxSABxX
2CvMOQ4r7BXmATMGNjkD1RCqJWDGxyB6ohVAAAAAAAAAAAAAAAAAAAAAAAAAAAAHwfR8PQYC
BQazBboFPQt1ZKTHbSdmlnnJJEfg8goFWoCiMydXm/0l8w+YPbHaZvVrkkKICcVbgKK5Orta
/aV8wmViswVyKYaXV2TLIzu0ss2KryeUekEqtd1UnfhchQDuOswSK+qr4JfMGWYNiPVVZ/8A
SXzDeADBlmDe2qqv6pfMJkarQkYQ1FxTqiSphgiPU1eA3PJ5SFuVLjwmTdlPtstl+ktREQ8u
xXlya5PcokJyoY7TKMa+poTY15zNXnzeOxgL5VqAZEZPLsf+kvmGZ7CqismaVTSNwjtqaUKN
V/Fa1x05Jq9Rsqq1Q47fhjQCxC9qz64/KQo0+j06m3OHEbbUeldrqPzqPOA8+5hXLmuKbgRN
aNl+sTEKP3ISWn2jHS4tLmvTXKxNfqC0yTzKQtDZmSU9diEVr+DP4iHuhNpNtcVO1s0w9Hq0
AOEaqUmO0TMYyabToQhhSSL7B3FWYJmZE6rN/pL5hvAB53CGswF0Oc2l5WMbRkRakss/uFBq
swdQQeqrtil/hL5h8wj2PT/Uq+AoNdqR6JAMeWYGf5VWbT8kvmHxVagJIjN5Vj/0l8woAA85
VqzAW7TsV5XWy0mfySyzYqvIKRVynqOxPKv6pfMOFZOz1L8s1PIWKgCbl6nXMtXXmzdpXzBl
2nfTq4JfMKQAPPs1mnprstzVlYqozJdqXpJTnk8pChlqBe2rK0X7UvmHGPshnb2Y5TopAMB1
mAkrm6q3ql8w+ZagWI9WVY9HyS+YUAAefo9YhIYlmtxRFrt48zSv/Y/IN+XKfci1ZWf/AEl8
w+UQrMy/LMeP+MxSATlVynJTjG8u3qV8w4OV6mkg/l15yP8AwV8wqDivsFeYBMwXO+DcAy8L
JCqJWDGxyB6ohVAAAAAAAAAAAAAAAAAAAAAAAAAAAAHw9Bj6PiuxPzAJ+Dux2mb1a5JCiJ2D
ux2mb1a5JDlUKxT6YkzmS221eBF7qPzJLOA3iTWzIpNKMzsRTCzn6ChkKsVapJ/silm02Z5p
E88RPsQWc/OMNUoTrz9NOs1B6cbskkKaKzbRFiqPMks982m4CtLwnprD+t2FOTZH0URGqH7y
zfaOglYR1JWYmKRHPwn8s97uxK/2CzFiRobRNRWG2UF+i2kkl9g7wEWJgxTmHdXkk5PkfTS1
6ofsI8xe4dsMiThJUiIiIijx7EXncFUSomyWpb3j/F0BVAAABKoZETtUsd/ny+SkVRLo2Lq1
TxSMi16rT48RFwFQAABMwj2Pzs1/kVCg2Vm0l5CGHCHvDN9UY3o7BPmAcgAAEysW1el4xn3Y
Wj0FimJlXK8mlHmzTCP7twUwAAABNj7Ip29mOU6KQmx9kU7ezHKdFIAAAAT6N2mTvp7lmKAn
0btMnfT3LMUAAcV9grzDkOK+wV5gEzBjY5A9UQqiXgyVsHYBf6RCoAAAAAAAAAAAAAAAAAAA
AAAAAAAAAPh5yMfQAeLYp2FBxWYkhZMxGGktJRDdSha7FYjNZ3MvYKFLpx0wzXHwfbQ6elxU
olrP94yuPSAAmnMqds1KLjKeYYagdXkuwlppJFrd8nTIpKc5Ypl4vKPQAAmKm1QrYtIvf9pT
m+wEzKoZddSSLzSUn/IUwATEzamZmR0gyIvCclOcZGlVVqqS5mSiUTzbSEoKQm/W41z/AIvs
F4AEop9VO/8AYqi/+lGccim1M03OkWPxa5SKYAJiJtTUV1UjF8hyUjLAVVoypanKYSjffU6k
ikJzFYiItHkF0AEnKFV3EVxpAZQqu4iuNIFYAHn6m9V5tOfjIoxpU6g0kZykZhrRNquIRZHs
fllIFUAEo59VI81FUf8A9KAKfVbH/YquMoziqADz05yrSnYSyoxkUd/VTI5KM/WqT/V9g2Jn
1Q1WOjGkvGclAqgAl6+qm4x6dsoHwp9VM89EUXl1ygVQAQG3quipyJWRjNLrTbZFrlFyxTWf
9X2DTlCq7iK40gVgASjn1UjO1GMyL9qRnHzKFV3EVxpArAAgwHqtGbeSuj51urcL5yj9I72G
jKFV3EVxpArAAmJm1M03OkGk/EclA4HOqqiMsiqK5eGUgVgAYqNHeiUiJHkEknW2ySoknciM
bQAAAAAAAAAAAAAAARcKUrdhRY6H3WCkS22lLaViqxTM72MR14P1SnKM2zKsM6cVyQ4y8XkI
yVin7Rawi7Gm/wC4M/ExYAeRjysH1yCjS25kCQebU5TzqL+Y8a32i2miU9RYySeMjLSUlzOX
1hukRmJTRtyWW3mz0pWklF9oingzrNanKJPfp6jO+pdsZP8AcPnzAOpNJiHhGuN8vqJRCcxN
cOWxscyv2XiFM6JCPST/ABlzpDzyapU6ZhCtysQdXPWpJ1SAk1kScc+uMjzl4R6OnVmnVNN4
cttxXhReyi86TzgOvIFPvfEf4y50h9OhwT2yXgzSnS/qFIAHn6VSorqp6HDkKS3KUhBHJczJ
xUnbsvKY3FQoJHctcl5Ndu292MPlG7dU9+q5CBTATk0SCk7kUgz8sp0/6hmqVIiM0qUto5KF
tsrUlRSXLkZJO36QtDFWO80652+buZ/3TAZ49HiLitGrXBmpBXPXLlzzekOR0KCds8orFbNL
dL+obYncjPoJ+A7gEzIMHxyuOO9IYJ1LjtVWmMIXKS28pwnCKU711kGZZ8bxkPRCTUu/lG9N
38MwHPIMHxy+OPdIMgwfHL4490hTABMyDB8cvjj3SGNqkRVVmTHNcvUkR2VpTrt3MalOEZ9l
/lL3C+JzOyKZvRjlvAOOQYPjl8ce6QFQoJHe8o/PLdP+oUwATMgwfHL4490hjplHjPsOqeXL
UZSHUF88dzJJZkRdl4iF8YKP3M9vp/8AEUA68gwfHL4490gyDB8cvjj3SFMAEOpUaIxTpLra
5iVobUolFMdOxkXpDuaocJTKFGqWZmkj7se6Q0VozKjTLadRV8BrZ7Sj0SATzoME/DL4490g
yDB8cvjj3SFMAHk8JKa1DTTNauy0G/PaZX87dO6Tvcs6vILOQYPjl8ce6QxYW2MqLfdVj+oe
gATMgwbWvK4470gyDB8cvjj3SFMAHn3aPFTXIzBLl6kuM6tSddu5zJTZEfZf5jG3IMHxy+OP
dIfXtkkPej/LaFIBMyDB8cvjj3SDIMHxy+OPdIUwAedpFMjvO1AnVyVk1KU2glSnOtSRJO3Z
eUbzoMEzveV7JjvSHCh9uqu/VclIrAJuQ4ViL5zm/a3ekOJ0GCRZjl8ce6QqD4egwECkUiLJ
pUd55ctTi0XUevHSv/ENmQIFrXl23490hzoHeSJ6AogJmQYNrXlccd6Qx1WkRY8RC2VykKOQ
wgzKW7oU6lJ/peIzF8Tq53A3vqN+MgBwyBBve8u+/HukPuQYNrXlccd6QpgAmZBg41/nXG3e
kMyYTVPr0FMZT5JebexyW+tZKti2zKMxcEubsgpnq3/ggB14RdjTf9wZ+JiwIuEziGmqctxa
UITPZM1KOxFnMbsrU3dCJwyecBsAY8rU3dCJwyecfTqcAiuc6MRetTzgMidlrm8U8sxzqNAp
lTUS5MVOqlnJ1B4iyPzkMRVKCWFK3DmxiQcJJY2qptfHPyirlOn7ejcKnnAStYV2mKI6fPTU
I5f4E3Mu3kcLSfnHJrCiO04TNWjP0x7R8sV2zPyLLMf2Cllam7oROGTzj45OprzZodlRHEKK
xpU4kyMBmoLrb51F1lxLjapijSpJ3I+sR4RWHiodNpurVByBVSpryZSibUy8WIacVOY0GdjK
5mNZV6o02xTDh1Rgv8eI8lLlvGaDOxn5swD1QxVrvJP8PzZzkmMlPwno9RSWozW0Ltc0OniK
L3/yH2tVCGdFnpRMYNRxnLETibmeKflAUYncjPq0/AdwnxKlB1ozeZHI9TTmN1Pi847spQNu
xuFTzgNQk1Lv5RvTd/DMbMpQNuxuFTziXUZ8NVbpCky45klbpqMnU5vkz8oC8Ay5SgbdjcKn
nDKUDbsbhU84DUJzOyKZvRjlvDvylA27G4VPOMDNQhFX5iteR8U4rBEeqpsZkp2/h8pe8BZA
ZcpQNuxuFTzhlKBt2NwqecBqGCjkRRn7baf/ABFDtylA27G4VPOMNJqEJMd4jmRyvJePO6n6
RXlAWAGXKUDbsbhU84ZSgbdjcKnnAcKyV6PMIjIvklZz8w1M9pR6JCXWajCVR5ZImRzUbSrE
TqfF5xqaqUEmkfPY3Yl/ip5wG0BlylA27G4VPOGUoG3Y3Cp5wEnC4rlRS/8A1WP6h6AeYwpn
RHMj6nKYVi1NlSrOEdiLGuZ+QXcpQNuxuFTzgNQDLlKBt2NwqecMpQNuxuFTzgM72ySHvR/l
tCkIrtQhHhDEUUyPilEeIz1VNiM1tW8PkP3ChlKBt2NwqecBqAZcpQNuxuFTzhlKBt2Nwqec
Bjofbqrv1XJSKwg0WfDQ9U8aXHLGmKMrupzlip8oqZSgbdjcKnnAah8PQYzZSgbdjcKnnHw6
lAsfz2NwqecB00DvJE9AURFoVQhJosQlTI5GSNBup5xQylA27G4VPOA1CdXO4G99RvxkDvyl
A27G4VPOMFaqEJcFskzI5nrqOeZ1OgnkGfh8QCyAy5SgbdjcKnnHwqpT1aJ0U/M8nnAaxLm7
IKZ6t/4IGrKUDbsbhU84wPSo8jCGmkxIadNLb1yQslWzJ8QD5hKhDjVOQ4hK0nPZI0qK5HnM
b8mQNoxuCTzDFhF2NN/3Bn4mLADJkyBtGNwSeYMmU/aMbgk8w1gAgJp8LqpWjWcfE1kk8XUk
2vjn5BUyZT9oxuCTzDInZa5vFPLMVgGTJkDaMbgk8wFS6eWiBF4FPMNYAIVIpsFT1SxoUc7T
FEV2k5ixU+QUTpNNM7nT4hn6lPMOijduqe/VchApgJ0mhUqW1qb1PjqT5GySZe0s485VME00
2nTHqa83qKWXFKYlMpcIisd8VfZJMi0ac+ke0GCuHahVA/2ZzkmA87GmwIUdoq3g6iGWKRE+
lhLrR5tJqIsx+QXYkah1BonoseA+g/0kNoP+Q2xSJUJkjK5G2m5ewTZmDFOkO6uwlyDI+miK
1NXttmP3ANmSKZudE4BPMJlRpsBNZpCEwoxIUt0jSTSbH8mfkA+qOmKzahV45eZl4v6Tt7zG
VeEMKZXaYhwnYbrS3MduUjUzK6DIs+jP5wF46TTjKx0+Lb1KeYDpNOPTT4p+dlPMNZGRlcju
Rj6AxZIpm50TgE8wwM0unnXpaDgRTQmKwZJ1FNiM1u3O1vIXuFwTmdkUzejHLeAdmSKZudE4
BPMGSKZudE4BPMNoAMWSKZudE4BPMMNIpVOVGeNUCMo9dPF1zSTzE4ryC2MFH7me30/+IoBy
yRTNzonAJ5gyRTNzonAJ5htABFrNKpyKRLUmBFSZNKMjSykjLN5hqapFM1JF6dE7Ev8ABTzD
7XO8sz1SvgNjXakeiQDLkimbnROATzBkimbnROATzDaADy2FFNgtZI1KFHRj1NlCsVpJYyTv
cjzaBcyRTNzonAJ5hMws/wDC/wC6sf1D0ADFkimbnROATzBkimbnROATzDaACE7Taf1RRWig
RsTWjyjTqKbGeO3bweU/eKGSKZudE4BPMOl2/VPFzFi6zesf77QpgMWSKZudE4BPMGSKZudE
4BPMNoAPP0WmU9b1TJcGMrFmKSV2knYsVObQKeSKZudE4BPMM1D7dVd+q5KRWAYskUzc6JwC
eYfFUimYp/2dE0fQJ5huHFfYH5gEWhUqnrokNS4MVajaIzUbKTM/LoG/JFM3OicAnmHCg944
V/oU/AUAGLJFNtbJ0TgU8ww1qmU9EFs0QYyT1zHTcmklmN5BGWjxGLYnVzuBvfUb8ZADsyRT
NzonAJ5h9Ok009NPiH/wp5hsABiyRTNzonAJ5hidhxYuENNONGZZNTb19TQSb5k+IWhNlkR1
+nXvmafMv4AHThF2NN/3Bn4mLAiYULU3HgLQ2p1SZzRkhJkRqznmK+YaMpTbd45l/WM9MBTA
TU1KZ+lRJpeZxk/+wfcpSdxp/wBZj8wB1J2WubxTyzFYebKfJ6p3FlSZmNrNJYmM1e2Oefs7
W9txTyjK3Gn/AF2PzAFEBOOpSiIzyLO+uz+YOJVWQZHai1DN4zZ/MAfaR2yo77VyUikPO0up
yELnHkierGlKOydS63MnMd1kN2VpG4tR+6/MAVBgrveGo71d5JjrytIt3lqP3X5gxVipvuUa
cg6RPQSo7hGpWpWT1p5zssBaidxserT8B3CNFqr5RWSyNUTshOctSz5vTHblaRuLUfuvzAFQ
Ra3EjzKrSmZLLbzalO3StNyPrDHdlaRuLUfuvzBNnVN9VZpazpM9OKbtknqd1dZ4Ovt7zIB3
dTbkG6qHUX4Xh1FfyrJ/unnLz3A61U6bYqzS1KbLTKhHqiPOaT65JDZlaRuLUfuvzAytI3Fq
P3X5gDvp9WgVNGNCltPf5SPri85aSHWzsimb0Y5bwk1CLEqLmqv4N1BL5ZyeaNpCyPzk58RF
hTa/DwgmNQY0icltDSVomqRqqUZ1FdRHa91K8ekB+ggPMPYZtwjQ3UqTPivKO1jSk0X8izUR
GKLVbcebS41SJ7iFFclJNkyP7wBWGCjneM9bbT/4ih1ZWkbi1H7r8wYaRU30RniKkT13kvHd
OpZruKO2dektAD0QCXlaRuLUfuvzAytI3FqP3X5gDurZ2o0w/wDSV8Bra7Uj0SEKsVR9dJlp
Oj1BBG0osZWpWLN5FjU3VpBNI/sWo9iX0XTAVgEvK0jcWo/dfmBlaRuLUfuvzAGPCz/wv+6s
f1D0A8hhNUXnck41LmtYlRZWWPqfXmV+tKyzzn5bELeVpG4tR+6/MAVAEvK0jcWo/dfmBlaR
uLUfuvzAHJ7ZJD3o/wAtoUh5tyqSDwijryTOLFiOkTfyWMd1t5+ztbMXh8JChlaRuLUfuvzA
FQBLytI3FqP3X5gZWkbi1H7r8wBxofbqrv1XJSKw8zR6m8h2o2pE9ZqlqM8XU8x2TmO6yz+a
4pZWkbi1H7r8wBUHFfYK8wm5Wkbi1H7r8wfFVaRiH/YtR0f6XTAdtB7xwfUp+AoDztEqryaN
DSmkT3CJpJEpOpWPNpK6yMbsrSNxaj91+YAqCfWyM4LZFtqP+MgdeVpG4tR+6/MGGsVR9cNB
HSJ6PnLB3VqXgdQdsy9J6PaA9EAl5Wkbi1H7r8wMrSNxaj91+YAqCfI7/Qd7v/FsdeVpG4tR
+6/MHS1NclYQREuQZMXFjvGRvYnXdc3oxVGA5YRdjTf9wZ+JiwI+EXY03/cGfiYsAAAACSnZ
a5vFPLMVhJTstc3inlmKwAAAAnUjtlRz/rauSkUROpPbKhvtXJSKIAMFd7w1HervJMbxgrve
Go71d5JgNMTuNj1afgO4dMTuNj1afgO4AEqol/b1IO2cjeK/7gqiTUTPqgo6fAerH/AArAAA
Ag01WNhjWisXWtMFp05jP+YvDz9LTbDKune9245+brTAXHmW32lNvNocbVmNKyuR+wRnsF4z
ajdpMh+mPHnuwq6DPyoPMf2C6ADz2vq9TDJM2CmpMF/jw+tct5Wz0n5sw+4M1qBLadZQ+lEg
5DytRc61ZEbijLMfkMegEGJR6fU4b5TYjTp66kdeZWUXyqtCizgLwDzxUWqU250eqqW34I04
jcR7Fl1xEPvVKuDZNcpz8E721ZHyrJ/vFnLw5rAKNc7yzPVK+A2NdqR6JCbUZkadQJjsR9t9
Bsq65tRH4BSa7Uj0SAcwAAHn8LdNFL/9Vj+oegHn8LSz0Q//ANVj+oegAAAAEpw/72Ri/YXf
xGxVElzZZH3i7+I2KwAAAAlUPttUOxleavT6KRVEuiEZLqVzveav4JFQAHFfYK8w5DivsFeY
BhoFshQbFYtRTm9goCfQe8UH1KfgKAAJ1c7gb31G/GQKIn1q2sm77aj/AIyAFAAAAE6Rsgg7
3f5TQoidI2QQd7v8poB0YRdjTf8AcGfiYsCLhPqmoU/USQbmvmcUlmZFe56bDvJVb8LNP4Vf
RAUwE011rwM0/hl9EfDXXL5o9OMvXr6ADgnZa5vFPLMVh5pKqv1TuHqUHVNZpzaqu1sc/Dii
jj13a9O4dfQAVAEvHru16dw6+gGPXdr07h19ABzpPbKhvtXJSKI85S11rHnYseBfXS73eWWe
yf8AKY349d2vTuHX0AFQYK73hqO9XeSY6seu7Xp3Dr6Ax1hdZOjTidYgE3rdzGNL6zMixTvb
rAFqJ3Gx6tPwHcI0Vdc1qzix6cZYibXfX4vQHbj13a9O4dfQAVBJqPf+j5i0vZ/3Byx67ten
cOvoCZOXWMuUrHZgkv5bEInl2Prc9zxcwD04CXj13a9O4dfQDHru16dw6+gAqDz1KO+Gdd8i
I/JMbceu7Xp3Dr6Ah01VV6rK0bbMI3sRjVCU6skl1uax4uf3EA9gAl49d2vTuHX0AJyuXzxq
dxhfQAVBOoncr++5H4qgU7WD7GHALzyln/1idSF1koz2psQDLXL18Z5ZZ9UVf9Hx3AeiHwyI
yMjIjI/AYmk5XL541OtvhfQHzVK7tancOvoAJ2EWDdNcgSpbLRxZCWzPHYPExvORZjHJvqkp
qEn8hV45JLN2l4v6T+JjsrC6ydIlE5HgEnUlYxk+sz9hYg1IcrmppxY1OtilpkL6ADqhYT06
S7qD6nIMktLMtOpq9l8x+8WSMlERkZGR6DIRZcapzmTal0+lPNn+it5Z/wBAlt4P1qEZHSH2
IKb3NrXK3WvL1qkZj0Z7gN+Fumi/7qx/UPQDwmE06tsJpxVGnsGTExt0pDCzNtZleycW2MWn
mFqBWptTK8JdJeO18UpKyUXnSaLkA9CAl6pXdrU7h19AfTcrl80anEXlkLP+gBwc2WR94u/i
NisPMrXWOqZgzYg6rrNyxasvFtjovc8XTo8HjFLHru16dw6+gAqAJePXdr07h19AMeu7Xp3D
r6AD7RezqOe/zxfwSKY8zRnawpdRNpiCfzxZKJTyysdi0dboFLHru16dw6+gAqDivsFeYTce
u7Xp3Dr6A+KXXMU7x6do+nX0AHbQe8UH1KfgKA89RV1oqND1JinmjUU4pqeWR2t4sUbceu7X
p3Dr6ACoJ9b7hb33G/GQOvHru16dw6+gMVXXWTht6oxAJOuY/YvLM76qi36Oi9vYA9CAl49d
2vTuHX0Ax67tencOvoAKgnSNkMHe7/KaHDHru16dw6+gOhtU9WEMPXzcZHzZ7F1FxSr9c3e9
yLyAOeEXY03/AHBn4mLAj4RdjTf9wZ+JiwAAAAJSTLqqcK2fWSTv++YqiSkj6q3Dtm1kkr/v
mKwAAAAm0dRLVUDSdy14svcSSFITKKpKjqBpKxa8cL2kREf2imADBXe8NR3q7yTG8YK73hqO
9XeSYDTE7jY9Wn4DuHTE7jY9Wn4DuABIqOyKjf8APyCFcSKjsio3/PyCAVwAAAefpJl1ZV8i
L9GPf6hj0A89SdmVf9GPyDAehAAABOoncr++5H4qhRE6idyv77kfiqAUQAAGCud5ZnqlfAbG
u1I9EhjrneWZ6pXwGxrtSPRIBzAAARsIjMjpRF4ag0R+5Q7Z+D9Mnuaq9GSh/wADzRmhZH47
l/McK+okrpV/DPbIs3+VQrgPPFBr9LM1QpyamwX+BL61y3kcLSfnzDm1hTGbWTVWjv0x48xE
+m6FH5FlmP7BeHW8y0+2bbzaHEHpStJGR+wBLJ1t7CiK404lxCoDpkpJ3I/lG/CLA8jJweYa
wlaRSXnKY4uI44amM6TMloKxpPNbPozaCG7XtfpirTYSKlHL/Hh9a5bytnpPzGA9AAl07CGm
VJepR5JJeLSy4RoWR+Kx/wAhUAR8Huyqub/yDvwSLAj4Paapv934JFgAHFfYK8w5DivsFeYB
hoPeKD6lPwFAT6D3ig+pT8BQABPrfcLe+4346BQE+t9wt77jfjoAUAAAATpGyGDvd/lNCiJ0
jZDB3u/ymgHRhF2NN3+z8TFgRsJGifap7RqUklTWs6DsZaTzGO/IzVra7n8aXzgKQCadHaO1
5c/N+1L5x9yS3tydxlXOA4JV/ehxOfuNJ/xmKg80ilNlhQ4jXM3uNKr64Vfsz8N9Aq5JRtyd
xlXOAoAJ2SG7313O4yvnH3JKNuTuMq5wHTQOxqG/nviKw85RKYhZTz11MK010utkKLwkKB0Z
BnfX1QLzSVAKYwV3vDUd6u8kxxKkIL9dnn55KhirVKQijz3CmTjxY7h4pyFGR9aekgFiJ3Gx
6tPwHcI8WjoVFZPX1QzoTokq8Q7cio2/UeMqAUxIqOyKjf8APyCHaVHQRGWvqgd/HJUJc+lJ
TXaS3rycePq2c5CjMutLQfgAemATSoyC/Xqgf/0qHzIyLd3VDjKgFMeepOzHCD0Y/IMbsio2
/UeMqESmUxK8Kq21rqYkm0sdcl8yUq6PCfhAeuATMio2/UeMqDIqNv1HjKgFMTqJ3K/vuR+K
occio2/UeMqGGkUhK4zxnNnlaS8XWyVFocUXvAehATMio2/UeMqDIqNv1HjKgHZXO8sz1Svg
NjXakeiQh1ikJRSZainVAzJpWY5KjI8w1N0ZJtpvPqOgv1lQCqAmZFRt+o8ZUGRUbfqPGVAO
NcMidpdy0zkclQqjzNapaGnKZebOMlzUJ66Qo7darQKeRUbfqPGVAKYCZkVG36jxlQZFRt+o
8ZUA4ObLI+8XfxGxWHml0pBYTsN68nddCcPG1wrGKy0eHxZ/gKWRUbfqPGVAO6oUmBU0GmbF
bdzWJRlZReY9JCXkSp00r0WqqUgv1ad8oj2KLrkjdkVG36jxlQZFRt+o8ZUAgUXCDJpzk1iI
8wapizXIabNbKVZs1yzj1USbFmt6pEkNPo8baiUIFEpSHTqV5k5OLNcT1sgyvmLT4zHaeBtN
S6p9h2ZHkKO+rNPmSiMB6IcV9grzDyLlHwgp7q1lNfqsbwIKSpl0vNpI/wCY5Rp9LfUpmRUa
rAkER/JS31Nn7DPMfvAXqD3ig+pT8BQHnqJSUO0WEvX08sZlJ2TJURaPANx0ZG36hxlQCmJ9
b7hb33G/HQOGRUbfqPGVDDV6SluG2rXs9XzmOVlSFGWd5Bfz94D0ICZkVG36jxlQZFRt+o8a
UApidI2Qwd7v8poccio2/UeNKGduEmHhDDtIku40Z7tzprtZTei4DtryiTk0z280XvuQrCRh
Dopttvs/ExXAAAAElOy1zeKeWYrCSnZa5vFPLMVgAAABKoJWKoZ7/PnfiQqiVQjuVQMr92ul
n9gqgAwV3vDUd6u8kxvGCu94ajvV3kmA0xO42PVp+A7h0xO42PVp+A7gASKjsio3/PyCFcSK
jsio3/PyCAVwAAAefpGzHCD0Y/IMegHn6Rsxwg9GPyDAegAAABOoncr++5H4qhRGCjW1q9bb
T/4qgG8AABhrXeeX6oxsb7WnzEMdb7zTL5vklDY2Vm0lpsRAOQAACVXD+VpZeOcjkrFUSq52
6lb+TyFiqAAAAJLmyyPvF38RsVhJc2WR94u/iNisAAAAI+D2mqb/AHfgkWBHwe01Tf7vwSLA
AM82HGmx1NS2G3kW7FabjQOK+wV5gHlKTg+83SIkik1ORDdW0lSm1HqjSjt/6no9g2nWKrTT
JNXpZutlplQTNafOaD64iLwmKFBM1UKCZlYzYRm9goAMNPrNOqZfMpbbp+FJHZRedJ5xxrfc
Le+4346BwqFAplRXqj8VJPaSeb6xZH48YhEqtOrNMiNnFqSp8dMhkyYlEWOZ6onFIl+lbT4A
HrgEBGFLDC0tViK/THjzfKpxm1H5FlmP7BbZeakNJdYcQ42orkpCiMj9oDsE6Qf94IJfs7/K
aFETpGyCDvd/lNAOnCE7FTT/AG9r4mK46JkOPOY1GWyl1u5Hiq8ZaDGHqbo+0W/efOAqgJXU
3R9ot+8+cOpuj7Rb9584D4nZa5vFPLMVhJ6maNjY2sG72te584+9TdH2i37z5wFUBK6m6PtF
v3nzh1N0faLfvPnAfKB2NQ3898RWEksGqMV7QGyudzsZ5z94+9TdH2i37z5wFUYK73hqO9nO
SY6epuj7Rb9584+Hg1RzIyOC3Y8x5z5wFCJ3IzfTqafgO4SupujkVigot4rnzh1OUgv1JH1l
c4CqJFR2RUf/AJ+QQ5dTdHI76xR7z5w6m6PjErWLeMnQdzuX2gKoCX1PUraafrK5w6nqVtNP
1lc4CoPPUk/75V8v8sfkGNvU9Stpp+srnHHqao+MatYN4x6Tudz+0BWAS+p6lbTT9ZXOHU9S
rW1mn6yucBUE+ineK9vp/wDFUOssHaSX6oXtWrnHzqbo5FbWLdr30np94CqAldTdJzfNNH+o
rnH3qepW00/WVzgO6tFejyy0/JGNiOwT4MwlrwZo6yMlQyNJlYy1RVvdcfSwdpJJsUNNvKtR
/wAwFUBL6naSX6mn6yucOp6lbTT9ZXOA+Vzt1K38nkLFUSV4NUhZkaoSTxTuXXqzH49I+ng5
STVfWn3iucBVASjwcpJlbWZF5lqL+YFg7SSt8zLN/nVzgPjmy2PvF38RsVhK6m6Re+skEdrX
JSiO3vHwsG6SR9ynwq+cBWAS+p6lbTT9ZXOHU9Stpp+srnAdeD+mqb/d+CRYEosG6Om9oLZX
O52M85+8fSwepRF3In66ucBUHFztavMYm9T1K2mn6yuccVYN0hZWVCSf76ucB3UEiKhQCI72
joz/ALpDeJRYNUciIigNkRZiK55vtH3qcpHghIzf5lc4CoMFb7hb33G/HQOssHaSWiGn6yuc
fDwbo5lY4LZle9rnzgKTrTbzZtuoStCtKVFcj9giSMFYhOG9TH36Y/pvGVZBn5UaD+waepyk
ZvmSM2jrj5w6m6QWiCj3nzgMeusIaYo9dxW6pGL/ABYvWOkXjNB5jPyEEGswqvXo2tlOE6zH
eJxpxBpUi6m9JH5vANnU3R9oo958474dHp8CQb8WKhp004prK97eL7AH/9k=)
ПИФАГОРОВЫ ТРОЙКИ И ТЕОРЕМА ФЕРМА
Теорема Ферма является одной из самых знаменитых математических проблем в истории. На протяжении более 350 лет эта теорема была самой мучительной математической загадкой, и лишь в 1995 г. британский ученый Эндрю Уайлс доказал ее. Теорема Ферма имеет прямую связь с Пифагором и его тройками. Теорема берет уравнение пифагоровой тройки а>2 = Ь>2 + с>2 и утверждает, что для любых целых показателей степеней, больших 2, невозможно найти такие целые числа а, Ь, с, чтобы выполнялось это равенство. То есть не существует такой тройки целых чисел а, Ь, с, что а>n = Ь>n + с>n при n > 2.
![](data:application/octet-stream;base64,/9j/4AAQSkZJRgABAQEASABIAAD/2wBDABALDA4MChAODQ4SERATGCgaGBYWGDEjJR0oOjM9
PDkzODdASFxOQERXRTc4UG1RV19iZ2hnPk1xeXBkeFxlZ2P/2wBDARESEhgVGC8aGi9jQjhC
Y2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2P/wAAR
CAEfAPoDASIAAhEBAxEB/8QAGwABAQACAwEAAAAAAAAAAAAAAAECAwQFBgf/xAAxEAACAgED
AwMDAgUFAQAAAAAAAQIRAwQSIQUxQRNRYQYicRQyI0KBobEzUmKR0XL/xAAUAQEAAAAAAAAA
AAAAAAAAAAAA/8QAFBEBAAAAAAAAAAAAAAAAAAAAAP/aAAwDAQACEQMRAD8A+fgAAAAAAAAA
CvuQAAiur4IUCCwAAAAAAAAANnrT9D0bWy93ZXf5NYAAAAAAAAAAAABQAAAAAAAAAAAAAAAA
AAAtcAQqfA2tOiqLfAGIMnFpW0QCAvAVXyBAAAAAAAAAAAAAAAAAAABf6EfIAAAAAABQBCpG
UYpvl8G6OPHJPmq8sDXUWkq59zKEG3UVbM3i5qLXHk5+i00vtyT/AAuAONDSznT21Xk36bRy
yZJLbzR32n6bOUaUUo9/6nZ6To6hBTfLl59gPMR6ZNx3bNzXk4uo6fJRW6KV9qR7paJY3xF/
PBjPQYpu3Dc12+APm+XTyxtqnSNSV8Hsur9H+1uCquWzyufD6WT2a+AOM0DK0w+UuAMC+C8V
5sxAABgAAAAAAAACuTaSt0uxCvvwBAAuQALzF/JABSAC3bBCgZRN0PttPtXBx1XybY04Pnn2
A5Gnjva4TPV9C0rntlkgpRXCS8HmOnqMslSXHv7Huuiwx4lF43Sa5rsB2mHRY3K42nZ2K08Y
wSq/wNMlUeDksDgZIJteDQ8KU93b8HYZYKSps484PslwBws2HdG+99jyHWulqnNKm/B7aUea
bo6/X4FkxySar3A+X5MbxS2swfbg7nrWl2ZW0uTpU+6AgL37sxAAAAAAAAAAADfqNOsG2s2P
Jf8Asd0aAAAAAfkAAEXyQt+wFVKVMNciNX9zpDi35AnF9zKNJp9zFdzKLTfbkDtOlJRyxk+V
fJ7PpqrJGMWku54zpkLyJyZ7jpGOCgttSb5sD0en554tcHJ7o4+nhtXe0Y6vXYtJicpugN06
SZoySdWu7Xk8rrPq7Ksrjjw8J9/c0Y/q6Xqw9XG0pOuQPU5nUeYtt+3g4eStjVtWbNHrsWux
rJjknxydf9QdQj0/TuSSbf8AYDouuQjJz5X4PIZY1OkcnU6zPqssskpu5PtZxsidW+4GNuqI
C9wIQrIAAAAAAAAAAAAAAAAAQKQCi+B4DAhmjAzi6fAHZ9PUnOKp0/k9z0ZbNrcUuOyPCdLb
epjFH0PpOKXpW6TaqwOzlq/TTfhHQ9Xz43F5Jzbf8sUdvnwqOLlVHzXk6LNLHo871OpXqY4L
7IeWwOl1ODV5fvhp9sfnizgZsOWE0smJRV+5zOo/Uuu12rUMUVgx9nHbbRwHPUPVqGVuacu7
4oD0/wBMYJ6ffvk6k7VdjifXCccWNq3z7nqtBo4YsGKS/wBqZ131T0f9foZZYSpw5pAfPoaa
L07lLKlLvRozcQS4fyFjk8lS7RdNmOorf9vYDWLoheAF8UQtEAAAAAAAAAAAACkAAAAAAAAA
GyC7MwXYzglaVgdr0rHGWqhFOr5Z9L6RiUdPGqpo+e9F+3UwkoqXjk97oJenCDa5argDs8kN
0HFpNe51ep0uBS3ThuS7Wux2kc8XFGnLOPwB0Oo6bp3kWSO1TflR5NGl6B+p18JZINYU90pS
fLO8jlxU9sYtryblqeLUUkl3A5NQhFKKVJUiNJ43BpbZKjrX1G8sscFfH/RyMWWWdqPZ+APm
vXMEdH1fIkkoyfg4Wt08IR3wlarudz9YYZfrJZE7UXyefySksVO6YHGKiFVeQD9iGSW5mIAF
IAAAAAAAAAAAAAAAAAoAAVGxQakq7mo2JNLc2wO16fNwnCpU7tnutLll+kjJNX5Z4Hp7j6kX
Pt7Ht+nyg9K7fD8MDmrVyXMlVjNmk2qn+Udbmk3zBtNPm/Y52DHuam/YDdBUn9jr48mGVycV
CKdPwbd6dON0lyYvU4cLu9zaA8512HVdNqPW0afp7eaNPTfq3U6OT/WYN3FJrwepy5YzVqSd
qmmeN+pNJPNnn6Kilijcue4HH631jD1HjFBpydyZ0maX21d2Y47UmTJK5fgDAooNAL8EKAIA
wAAAAAAAAAAAABAAPAAAAAVK3Rsi9sSY4NtUrOdDSOWP/l7AcfBkacabTR6XpGuk47ZN8HmM
2KWKfPg5Gj1EsclLc6vlJge4m9+O1Vt8l0+pcXJSk488L3Oo0mvxTkoz5te5yZ6iMktkO3YD
k6jWzhGsO7f7Vwzqc+DrG6OWUIuLd1u7Hb4Epu9ri2jVq5ZsOKUtsskU+VfKA6zUR6tqMd74
RXP2xlTOo1GTVyxuCeSO39zk+5nrdZqZZt0VKNex1+TPqJS25JSSb7e4GMZOKuRq7ttlyS8e
xigLxTIZONK12MQDBb+DEAC+KogAAAAAAACdMAAAAAAAAAZ447pGBu03+pt9wOTpMb/bxb7M
7jSY4qLSanFL27GnS6TZW+NbvPyciGDJhySTi/lJgbJdNw5sTlCm/Y6nWdJzYJbsacvhI9P0
/HGrSS9mznLDjzQakluXF2B4DHnlhkk04yi/J2GPXy2OFpLvweh1PQsOoVSVNu+DqdX9LZIz
rE3XgDdg6xHHJU/Hk7F6yGfE4pqpc1Z5HPoNZpW1KO5LvRpWqyRSUtyoD0uvzaeOJxjsTUar
5PO63LGajLalLszRm1Eskm22aW3Lu7AhUQsQLzVDwOKJYF8EIAAAAAAAAAAAAAAAAABnsqO6
XHwSO1cv+glJylbfIEa5CbTtFTvuKA9D0rUrW41jnJrJDszuNPGazt5MVxqlJvl/J4jT58mn
yrJjdSR6vpvU1rMbjKVT7UB2MceOE19745pHN3Rai4Stv+xwMU/T4lVPi0cmEbxxajz55A7D
BNLiXNLubZY04209r7nFxSikpQf3ez9jmYsqmvve6L7UgOPm0uDJH+JC4P27nmus9IxqNwxU
k7s9U+7TXHscbUY/UxyUuzA+b6rSywy4RxT0uu01KS2O91WdPm0tzdcPwBwiqvJk4V4dmHYC
hsgAtkBk2nFJRpru/cDEAAAAAAAAAAAAAALFW6AIvHIS55FdwIxyOzK7qwMTl6Jvets1Gd8M
4q78hNxdxdAev6T1DHqcv6LWfbk/lnfDo76OP0muVLH71yeB0+fHljGGW1Nftkj1vQ+qylt0
mtS3VUMj7TQHbxjGUVzVcG1XGKjDt3SMZ6WeOT4/hy7fBljxrs+WkBJvI3Gr2y4EoVBNu+Dc
3uUUuF/gyyQ349sX2A6TW6aEoW+77peTocmOG/ttSfDa7ntYYVki4uHPZNnV9S6ZOS248a7c
UB4/W6Xj1YrjykdblhSV38Hqp9G1eLLUsdwfd2dFrMOLDmeKU5KPi+aA6wG7Lh2rdFqUfdGk
AAAAAAAAAAAAAAAqQYCguwoyrhK6AxTZk5Okq7GPCZupJRl3QGmhbqjY9u7gw4dvn4AiXBZR
aSZEbnzV8quANXaSO86dnhqcfoZ05Nfta7o6ZpOXDMsE5YciyK+APo3ReoZ030/qD5jG8WRr
9y/9O1nheGW58xflHnulavTdU6ZPDlaWRKk2+Ts+narUabItD1D9k+MOV/zfD+QOY6lyo90I
ylFSXZmzJi9Ka3Ol4oVdpefIDApzkoR5flnB+ofqPRdCgsMIrPq3/Kn+38nJ6prl0XombVSS
eWqgvl9j5Rnnl1OSefLJznN22+XYHL6l1/qPUp3mzuMfEYcJHWNtu27Mtv22YgW+KtkAAAAA
AAAAAAAC1zyH/YWPyBXTS+Cr/JFzwZRai3fPAE7OmiPgbm+7F2gJ8mzG1zF9qNf+C9uwB3Hg
J8EttUx2AhsxycXXdP3NZbA3cLh/9kX3Pm6NabTo3pSUdypIDdpc89NLfC1X9z3nR+qabq+l
jg1FKa/b/wCo+fxyraovtRyNJqsukmpx/anfAH1CbeSKhJvfB1+fkumhOeRxnzT5Oq6P1OOu
jGbneSK4Xlr2Oz6l1DHpNBPLpcUsuoapQj3T+QPJfXvVP1Gtx9NxSWzEt0//AKOjjov4dJqP
222zj6vTa3Dmeq1WKTcpOTbONm1mXN3dL2QEk4whKNpyujQAAAAAFVeSAAAAAAAAAUCi7X3r
gBF0m/JVy22R1X+CeEBbXsOap9iLkfgAmX+pOCAVcsMhbAgAArdm2GR7NjS+GzVXBAOTD7ZV
Jcs3Rdpp8I4ik5VzybbXFOrA7fpeuejyxdurO+1P1bghp5QxY5LK+LPFyk+FTST7mfDk5Lb+
GB7fR6/S9Q06jlhcX9rdeToes/Tbg5Z9HXp020cHQ6jJg4hJqN2+eGdrouvSxt4s6U4ydUB5
Npp01TIen1nS8HUVPLpZRjLx8nndRpsumnsyxcWBqAAAAAAKKlwBAAAAAF8BBEAvceBY/IEK
QAAX4IAAAAAqAgAAqdPg3Q+/hGkyxzcHYGyW5vl8IJ1w13M4pTX5I4/ftbSryByMeSKg+P6m
Lyb1b/d7rgxi7ltbXHwNjm34QHIwarPip45yRuWfFrISWp5aul7fJ17y7Y7U3+TSpNdn5A36
jQShD1cL9TH5a8HGjhyTVxi2jdHUZMacYzdMzeq2puNJvwgONLDkirlCS/oY7X5RzZ9Syyio
tRa+VZq/WTttxhb/AOIGhQfd8G/HpYzx7vVSd9iS1mSXD21+BLVzkqcYr8IDZPQZkty2uPvZ
oyYJwXK7Eeabu2Y+pLy2wMQABSFIAKQqdIB+QQr7gQF/JAAAAAACkBX8AQAAZ48jhK+69jkv
bKG9dvLOGZRnKKpPgDfbrjs+zMpZKhXZkhKLi/Px7GGWtypNIDF25GN7X4Mo2lXuYy58UBjJ
27FAeQICtcsgAoIAAAAAAAUgAFogApAABX35FcgPBAPIFohSACrkhb7AJUnSdr3ohX2IAL5C
KkrAidGe62m+WYSq+OwTYGc238GIXISAnJWuKoqjbqhOLi2n3AjtKmiF7v8AJGqYEAFcWAAA
AAAf/9k=)
БЛЕЗ ПАСКАЛЬ (1623–1662)
Француз Блез Паскаль применял свои феноменальные способности во многих областях науки. В 1654 г. с ним произошел несчастный случай, когда он ехал в коляске, запряженной лошадью.
Физически он не пострадал, но инцидент имел для него психологические последствия. Паскаль отдалился от светского общества и нашел убежище в религии, посвятив себя философии и теологии. Он был замечательным писателем и внес важный вклад в физику, занимаясь мало изученными в то время вопросами об атмосферном давлении и вакууме. Он является изобретателем гидравлического пресса и шприца. Он также изобрел механический калькулятор (различные варианты вычислительной машины, называемой «паскалина»). Однако его наиболее важный вклад в науку связан с математикой, в частности, с теорией вероятностей.