Золотое сечение [Математический язык красоты] (Мир математики. т.1.) (Корбалан) - страница 18


Соотношения между числами в последовательности Фибоначчи

Три последовательных числа в последовательности Фибоначчи ведут себя предсказуемым образом. Выберем три любых последовательных числа и перемножим два крайних. Затем сравним результат с квадратом среднего числа. Разница всегда будет одинаковая, на единицу больше или меньше в зависимости от выбора чисел. Например, для чисел 3, 5 и 8 имеем 3∙8 = 5>2 — 1, а для чисел 5, 8 и 13 получим 5∙13 = 8>2 + 1.

В общем случае это соотношение между числами в последовательности Фибоначчи записывается так:

а>n>2 - а>n-1а>n+1 = (-1)>n-1

Если мы применим это свойство геометрически, мы обнаружим нечто странное. Нарисуем квадратную решетку 8 на 8 (она будет содержать 8>2 = 64 маленьких квадрата). Затем разделим большой квадрат на четыре части, как показано на рисунке на следующей странице. Далее мы переставим части, словно детали головоломки, и построим из них прямоугольник со сторонами 5 и 13. Но тогда он будет содержать 13∙5 = 65 маленьких квадратов! Откуда взялся дополнительный квадрат? Чтобы разобраться в этой загадке, мы должны посмотреть на углы, образуемые линиями, которыми мы разделили наш квадрат. Они не совсем равны, и когда мы строим из кусочков новую фигуру, они не образуют идеальный прямоугольник, оставляя крошечные зазоры. Эти небольшие зазоры в сумме дают дополнительную единицу площади, которая, казалось бы, появилась ниоткуда.



ПИФАГОРОВЫ ТРОЙКИ И ТЕОРЕМА ФЕРМА

Теорема Ферма является одной из самых знаменитых математических проблем в истории. На протяжении более 350 лет эта теорема была самой мучительной математической загадкой, и лишь в 1995 г. британский ученый Эндрю Уайлс доказал ее. Теорема Ферма имеет прямую связь с Пифагором и его тройками. Теорема берет уравнение пифагоровой тройки а>2 = Ь>2 + с>2 и утверждает, что для любых целых показателей степеней, больших 2, невозможно найти такие целые числа а, Ь, с, чтобы выполнялось это равенство. То есть не существует такой тройки целых чисел а, Ь, с, что а>n = Ь>n + с>n при n > 2.



БЛЕЗ ПАСКАЛЬ (1623–1662)

Француз Блез Паскаль применял свои феноменальные способности во многих областях науки. В 1654 г. с ним произошел несчастный случай, когда он ехал в коляске, запряженной лошадью.

Физически он не пострадал, но инцидент имел для него психологические последствия. Паскаль отдалился от светского общества и нашел убежище в религии, посвятив себя философии и теологии. Он был замечательным писателем и внес важный вклад в физику, занимаясь мало изученными в то время вопросами об атмосферном давлении и вакууме. Он является изобретателем гидравлического пресса и шприца. Он также изобрел механический калькулятор (различные варианты вычислительной машины, называемой «паскалина»). Однако его наиболее важный вклад в науку связан с математикой, в частности, с теорией вероятностей.