Золотое сечение [Математический язык красоты] (Мир математики. т.1.) (Корбалан) - страница 17

Эта формула позволяет нам определить тип треугольника, не измеряя его углов. Все, что нам нужно сделать, — это найти квадраты длин трех сторон и сравнить квадрат длины большей стороны с суммой квадратов длин двух других сторон. В случае равенства мы имеем прямоугольный треугольник. Если квадрат длины большей стороны больше, то треугольник является тупоугольным (наибольший угол больше 90°). Если сумма квадратов больше, то треугольник является остроугольным (все три угла меньше 90°).



Если мы построим квадрат на каждой стороне прямоугольного треугольника, то количество бумаги, необходимое для того, чтобы покрыть больший квадрат, будет таким же, как и количество бумаги, необходимое для покрытия двух меньших квадратов.



Если длины сторон прямоугольного треугольника являются целыми числами, то они образуют группу из трех чисел, называемых пифагоровыми тройками. Другими словами, пифагорова тройка — это три целых числа (а, b, с), удовлетворяющих условию:

a>2 = b>2 + c>2.

Теперь мы продемонстрируем метод нахождения пифагоровых троек с помощью последовательности Фибоначчи. Возьмем любые четыре последовательных числа из последовательности, например, 2, 3, 5 и 8, и построим еще три числа следующим образом:

1. Произведение двух крайних чисел: 2∙8 = 16;

2. Удвоенное произведение двух чисел в середине: 2∙(3∙5) = 30;

3. Сумма квадратов двух чисел в середине: З>2 + 5>2 = 34.

Мы можем легко убедиться, что эти три числа (34, 30, 16) образуют пифагорову тройку:

16>2 = 256; 30>2 = 900; 34>2 = 1156 => 256 + 900 = 1156.

Этот метод работает в любом случае для любых четырех последовательных чисел из последовательности Фибоначчи.


ЗНАЧЕНИЕ И РОЛЬ ПИФАГОРОВЫХ ТРОЕК

Самая известная пифагорова тройка — из наименьшего прямоугольного треугольника с целочисленными сторонами — это (5, 4, 3). Эти числа удовлетворяют соотношению:

3>2 + 4>2 = 5>2

На протяжении многих веков эта тройка использовалась в виде веревки с узелками, отмечающими три длины. На некоторых изображениях, сохранившихся со времен Древнего Египта, можно видеть людей, несущих моток такой веревки с узлами. Как они ее использовали? Считается, что веревка раскладывалась на земле в форме треугольника, а узлы использовались для разметки углов. Получалась фигура, стороны которой были пропорциональны 3, 4 и 5. Таким образом строился прямоугольный треугольник.

Веревки с узлами являлись быстрым способом построения прямого угла (90°). В Египте веревки с узлами использовались для построения перпендикулярных линий при разметке прямоугольных полей вдоль илистых берегов Нила. Эти отметки каждый год смывали паводковые воды. Также эти веревки использовались при обработке камня для египетских пирамид. В сущности, в виде этих простых веревок математика применялась во всех случаях жизни.