Орбита, описанная в левой части таблицы, стремится к началу координат; та, что в центре таблицы, описывает единичную окружность; та, что справа, уходит в бесконечность.
На рисунках представлено графическое изображение этих трех орбит на комплексной плоскости.
Мы видим, что для точки внутри окружности орбита стремится к началу координат, для точки вне окружности — уходит в бесконечность, а точка, которая находилась на единичной окружности, по-прежнему остается на ней. Чем больше модуль исходного числа, тем быстрее оно удаляется от единичной окружности. Таким образом, комплексная плоскость делится на две части: «пленников», которые находятся внутри единичной окружности, и точек вне ее, которым «удалось сбежать». В этом случае множество Жюлиа представляет собой единичную окружность — множество точек-«охранников». Заметим еще один факт (впоследствии он сыграет очень большую роль): множество Жюлиа инвариантно по отношению к квадратичной функции, то есть любая орбита, начало которой находится на множестве Жюлиа, останется на этом же множестве.
Заметим, что существуют две фиксированные точки: (0, 0) и (1, 0). В этом случае точка (0, 0) является аттрактором, так как к ней стремятся орбиты всех точек внутри окружности. Говорят, что в этом случае внутри единичной окружности располагается область притяжения аттрактора — точка (0, 0). Точка (1, 0) является неподвижной точкой — репеллером, так как рядом с ней существуют точки, например, (1, 01, 0), орбиты которых уходят в бесконечность.
Если мы будем считать бесконечность еще одной точкой плоскости и обозначим ее знаком <*>, то будем говорить, что точка °° является неподвижной, а ее область притяжения будет состоять из всех точек, лежащих вне единичной окружности.
Единичная окружность — простейший пример множества Жюлиа. Оно обладает теми же свойствами, что и большинство множеств Жюлиа: оно является границей области притяжения аттрактора (0, 0) и
, динамика в окрестности точек этого множества неустойчива.
Частный случай z>n+1 = z>n>2, который обычно записывается в виде z —> z>2, — это своеобразный вход в мир удивительных и прекрасных фрактальных множеств Жюлиа.
Чтобы получить изображение других множеств Жюлиа, например для с = 0,5 + 0,5i, нам понадобится помощь компьютера. В теории для каждой точки плоскости нужно подтвердить, что ее орбита стремится к нулю или к бесконечности. На практике это невозможно, поэтому, чтобы изобразить множество Жюлиа, нужно использовать альтернативные алгоритмы.
На следующем рисунке показана таблица с данными для орбит нескольких точек, а также изображение множества Жюлиа, соответствующего