На основании этой классификации можно разделить значения константы с, которую мы будем называть комплексным параметром, на два отдельных множества: те, которые порождают связные фигуры для итерации z>n >+>1 = z>2 + с, и те, что порождают несвязные фигуры.
ИГРА В ХАОС
Алгоритм нахождения последовательных приближений множества Жюлиа работает очень медленно. Чтобы быстро получить достаточно детальное изображение множества Жюлиа, обычно используется другой алгоритм, который носит название игры в хаос. В предыдущей главе мы говорили о так называемых аффинных преобразованиях, которые при итеративном применении дают линейный фрактал. Теперь нам понадобится найти преобразования, которые при итеративном применении дают множество Жюлиа. Однако эти преобразования не могут быть аффинными, так как множества Жюлиа не обладают линейным самоподобием. В свою очередь, когда к точкам, находящимся вблизи множества Жюлиа (и вне его) применяются итеративные преобразования z —> z>2 + с, орбита этих точек уходит в бесконечность. Иными словами, множество Жюлиа выступает в роли репеллера. Если же теперь мы рассмотрим обратное преобразование, то множество Жюлиа будет уже не репеллером, а аттрактором. Как записывается это обратное преобразование? Пусть w — следующая точка итерации w = z>2 + с. Если мы хотим перейти к предыдущей операции, нужно выделить z из этого уравнения. Получим два решения:
z = +√(w — c);
z = -√(w — c).
Игра в хаос выглядит так: выбирается произвольная начальная точка, затем рассчитываются два изображения в соответствии с предыдущими преобразованиями. Процесс повторяется для всех полученных точек, результаты отображаются на экране. Чем больше итераций мы выполним, тем точнее будет полученное изображение множества Жюлиа.
Вселенная в одной песчинке
Деление множеств Жюлиа на связные и несвязные возникло не случайно. Именно в ходе исследований множества Жюлиа был открыт один из самых удивительных математических объектов — множество Мандельброта.
На первый взгляд, составление подобной классификации множеств Жюлиа невозможно, так как считалось, что для этого нужно проанализировать все возможные точки всех возможных множеств Жюлиа для каждого параметра с, которых бесконечно много. Однако Мандельброт использовал теорему, которую независимо друг от друга доказали Жюлиа и Фату примерно в 1919 г. Согласно этой теореме, орбита точки 0 определяет, является ли множество Жюлиа связным или нет. В частности, эта теорема подтверждает, что если орбита этой точки уходит в бесконечность, то множество Жюлиа несвязное; в противном случае множество Жюлиа является связным. Эта теорема имеет огромное значение, так как теперь достаточно выполнить итерацию для единственной точки