Временные магниты «не могут» создать без внешнего воздействия (электрического, магнитного поля) достаточного перепада мерности для ярко выраженных магнитных свойств из-за хаотичного расположения диполей.
Электромагнит отличается от постоянного магнита. При пропускании через катушку электрического тока внутри катушки возникает электромагнитное поле; при этом катушка намотана на магнитный сердечник, то электромагнитные свойства значительно усиливаются.
Трансформация. Принцип действия трансформатора основан на явлении взаимоиндукции [11]. Трансформатор состоит из двух катушек, намотанных на общий сердечник. При прохождении переменного тока по первичной обмотке в железном сердечнике появляется переменный магнитный поток, который возбуждает ЭДС индукции в каждой обмотке. Это означает, что, повышая с помощью трансформатора напряжение в несколько раз, мы во столько же раз уменьшаем силу тока, и наоборот.
Попытаемся разобраться на конкретном примере с трансформацией переменного тока. На магнитный сердечник намотана первичная обмотка силой тока I1 и напряжением U1, с противоположной стороны на сердечник намотана вторичная обмотка, имеющая меньшее количество витков, в которой индуцируется ток I2 напряжением U2. Благодаря уменьшению количества витков на выходе изменяется сила тока I и напряжение U. Электрический ток в проводнике движется со вторичной обмотки с меньшим значением I2 или U2, при этом, если уменьшается I2, то увеличивается U2, и наоборот. Электрический ток I, протекающий через сопротивление R, вызывает падение напряжения U; падение напряжения на сопротивлении прямо пропорционально сопротивлению и прямо пропорционально силе тока, протекающего через него:
Принципа действия трансформатора, как и пояснение других физических понятий, можно продолжать и далее, однако на этом ограничимся, а интересующихся отправим к книге «Неоднородная вселенная» Н. В. Левашова.
Люминисценция. Объясним механизмы люминесценции.
1. Получая энергию, электроны, находящиеся на внешних орбитах, переходят в возбужденное состояние, в результате чего в зависимости от длины волны, излучаемого веществом, получается свечение соответствующей части спектра. При тепловом (энергетическом) балансе между средой (пространством, окружающее люминесцирующее вещество) и веществом, последнее будет издавать свечение.
2. Существуют вещества, которые способны люминесцировать при относительно низких температурах, т. е. поглощать тепло из окружающей среды и издавать свечение. У каждого люминесцирующего вещества свой диапазон температур, в пределах которых оно может издавать свечение, минимальное количество атомов (молекул), совокупное действие которых способно производить свечение в течении определенного промежутка времени.