Мы не можем наблюдать отдельный кварк или глюон из-за конфайнмента. Не означает ли это, что само представление о кварках и глюонах как о частицах несколько метафизично? Нет, потому что сильное взаимодействие характеризуется еще одним свойством, которое называется асимптотической свободой. Благодаря этому свойству понятие кварков и глюонов становится вполне определенным. При обычных энергиях сильное взаимодействие действительно является сильным и плотно прижимает кварки друг к другу. Но, как показывают эксперименты на мощных ускорителях, при высоких энергиях сильное взаимодействие заметно ослабевает и кварки и глюоны начинают вести себя почти как свободные частицы. На рис. 5.2 представлен фотоснимок столкновения протона и антипротона высокой энергии. Мы видим, что несколько почти свободных кварков, родившихся в результате взаимодействия, образовали «струи» треков, которые видны на фотографии.
Итогом успешного объединения электромагнитного и слабого взаимодействий стали попытки соединить эти два вида взаимодействий с сильным взаимодействием, чтобы в результате получилась так называемая теория великого объединения. В этом названии есть некоторое преувеличение: во-первых, теории великого объединения не такие уж великие, а во-вторых, они не объединяют полностью все взаимодействия, потому что в них не входит гравитация. Кроме того, все эти теории на самом деле неполны, потому что содержат параметры, которые нельзя предсказать теоретически и которые надо вычислять, сравнивая теоретические и экспериментальные результаты. Тем не менее такие теории могут стать шагом к полной теории объединения, охватывающей все взаимодействия. Основная идея построения теорий великого объединения состоит в следующем: как уже говорилось, сильные взаимодействия при высоких энергиях становятся слабее, чем при низких. В то же время электромагнитные и слабые силы асимптотически не свободны, и при высоких энергиях они растут. Тогда при каком-то очень большом значении энергии — при энергии великого объединения — эти три силы могли бы сравняться между собой и стать просто разновидностями одной и той же силы. Теории великого объединения предсказывают, что при этой энергии разные частицы вещества со спином 1/2, такие, как кварки и электроны, тоже перестали бы различаться, что было бы еще одним шагом к объединению.
Значение энергии великого объединения не очень хорошо известно, но оно должно составлять по меньшей мере тысячу миллионов миллионов ГэВ. В ускорителях современного поколения сталкиваются частицы с энергиями около 100 ГэВ, а в будущих проектах эта величина должна возрасти до нескольких тысяч ГэВ. Но для ускорения частиц до энергии великого объединения нужен ускоритель размером с Солнечную систему. Маловероятно, чтобы в нынешней экономической ситуации кто-нибудь решился ее финансировать. Вот почему невозможна непосредственная экспериментальная проверка теорий великого объединения. Но здесь, как и в случае электрослабой единой теории, существуют низкоэнергетические следствия, которые можно проверить.