Кеплер знал об одном из самых красивых утверждений, полученных греческими математиками, касающемся так называемых платоновских тел. Это трехмерные тела с плоскими гранями, причем все вершины, все грани и все ребра этих тел одинаковы. Очевидным примером является куб. Древние греки доказали, что существует всего пять таких платоновских тел: треугольная пирамида (тетраэдр), куб, восьмигранный октаэдр, двенадцатигранный додекаэдр и двадцатигранный икосаэдр. (Свое название эти тела получили потому, что Платон в Тимее предложил взаимно-однозначное соответствие между этими пятью телами и предполагаемыми пятью основными элементами. Такую точку зрения затем критиковал Аристотель.) Существование платоновских тел – пример необычайной математической красоты; она сродни красоте картановского списка всех возможных непрерывных принципов симметрии.
В своем сочинении Mysterium cosmographicum Кеплер предположил, что существование ровно пяти платоновских тел объясняет, почему существует ровно пять (не считая Земли) планет: Меркурий, Венера, Марс, Юпитер и Сатурн (в те времена Уран, Нептун и Плутон еще не были открыты). Каждой из этих пяти планет Кеплер сопоставил одно из платоновских тел, после чего он предположил, что радиусы орбит каждой из планет пропорциональны радиусам соответствующих платоновских тел, если их вписать одно в другое в нужном порядке. Кеплер писал, что он исправлял нерегулярности в движении планет «до тех пор, пока они не стали соответствовать законам природы»[124].
Современному физику может показаться чудовищным, что один из основоположников современной картины мира мог предлагать столь смехотворную модель Солнечной системы. И дело не только в том, что кеплеровская схема не соответствует наблюдениям планет Солнечной системы (а это на самом деле так), но прежде всего в том, что мы знаем, что подобные спекуляции не имеют отношения к истинным законам, управляющим движениями планет. Но Кеплер не был дураком. Тот способ спекулятивного мышления, который он использовал для объяснения структуры Солнечной системы, очень напоминает способ теоретизирования современных физиков, занимающихся элементарными частицами: мы не ассоциируем что-то с платоновскими телами, но верим в то, что существует, например, соответствие между разными возможными силами в природе и разными симметриями из картановского списка всех возможных симметрий. Кеплер ошибался не тогда, когда использовал подобный способ угадывания истины, а тогда, когда считал (как и многие философы до него), что движение планет представляет собой важное явление.