Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы (Вайнберг) - страница 146

.

Интерес к теориям струн реально возник в 1984 г., после того, как Джон Шварц вместе с Майклом Грином показали, что две конкретные теории струн прошли проверку на математическую непротиворечивость (что не удавалось доказать в ранее изучавшихся струнных теориях)[187]. Наиболее волнующим свойством теорий, рассмотренных Грином и Шварцем, было то, что они обладали определенной жесткостью, той самой, которую мы хотели бы видеть в окончательной теории. Хотя можно было представить себе огромное количество разных теорий открытых струн, оказалось, что только две из них имеют смысл с математической точки зрения. Энтузиазм в отношении теорий струн достиг уровня лихорадки, когда одна группа теоретиков[188] показала, что низкоэнергетический предел двух теорий Грина-Шварца необычайно напоминает нашу сегодняшнюю модель слабых, электромагнитных и сильных взаимодействий, а другая группа (ее прозвали «Принстонский струнный квартет»[189]) обнаружила ряд струнных теорий, еще более соответствующих стандартной модели. Многим теоретикам показалось, что удалось ухватить окончательную теорию.

С тех пор энтузиазм несколько поостыл. Сейчас ясно, что существуют тысячи теорий струн, столь же математически состоятельных, как и первые две теории Грина-Шварца. Все эти теории удовлетворяют некоторой фундаментальной симметрии, известной как конформная симметрия. Такая симметрия возникает не из наблюдений природных явлений, как, скажем, эйнштейновский принцип относительности. Напротив, конформная симметрия представляется необходимой[190], чтобы гарантировать совместимость теорий струн с квантовой механикой. С этой точки зрения, тысячи разных теорий струн просто представляют разные способы удовлетворить требованиям конформной симметрии. Широко распространено мнение, что все эти разные теории струн на самом деле не разные, а лишь представляют различные способы решения уравнений одной и той же лежащей в основе всего теории. Но мы в этом не уверены, и никто не знает, какой могла бы быть такая теория.

Каждая из тысяч отдельных теорий струн обладает своей пространственно-временной симметрией. Некоторые из этих теорий удовлетворяют принципу относительности Эйнштейна, в других теориях мы не можем даже различить что-то, напоминающее обычное трехмерное пространство. Кроме того, каждая теория струн обладает своими внутренними симметриями того же общего типа, как и внутренние симметрии, лежащие в основе сегодняшней стандартной модели слабых, электромагнитных и сильных взаимодействий. Но главное отличие теорий струн от всех более ранних теорий заключается в том, что пространственно-временные и внутренние симметрии не задаются в теории струн руками, а являются математическими следствиями конкретного способа, которым законы квантовой механики (а следовательно, требование конформной симметрии) удовлетворяются в каждой конкретной теории струн. Поэтому теории струн потенциально представляют собой важный шаг вперед в рациональном объяснении природы. Кроме того, они, по-видимому, являются наиболее глубокими, математически непротиворечивыми теориями, совместимыми с принципами квантовой механики, и в частности, единственными такими теориями, включающими что-то, похожее на тяготение.