Если экстраполировать то, что наблюдал СОВЕ, к много меньшим размерам ранних галактик, и вычислить степень неоднородности вещества на этих сравнительно малых масштабах, то мы столкнемся с проблемой: неоднородности размером с теперешнюю галактику были бы слишком незначительны в эпоху через триста тысяч лет после начала, чтобы вырасти под действием собственной гравитации в сегодняшние галактики. Один из способов преодолеть возникшую проблему заключается в том, чтобы предположить, что неоднородности галактического размера начали гравитационное сжатие уже в первые триста тысяч лет, так что экстраполяция того, что наблюдает СОВЕ, к много меньшим размерам галактик неверна. Однако это невозможно, если вещество Вселенной состоит главным образом из обычных протонов, нейтронов и электронов, так как неоднородности такой обычной материи не могут испытать существенный рост, пока Вселенная не станет прозрачной для излучения. Просто, в более ранние моменты времени любой комок вещества будет разнесен на куски давлением собственного излучения. С другой стороны, экзотическая темная материя[236], состоящая из электрически нейтральных частиц, стала бы прозрачной для излучения намного раньше, и поэтому начала бы гравитационное сжатие в эпоху намного ближе к началу, образуя значительно более сильные неоднородности галактических масштабов, чем те, которые вытекают из экстраполяции данных СОВЕ, и, вероятно, достаточные для того, чтобы вырасти в сегодняшние галактики. Открытие частиц темной материи на ССК подтвердило бы это предположение, пролив, тем самым, свет на раннюю историю Вселенной.
Существует множество других новых явлений, которые могли бы быть исследованы на ускорителях типа ССК: частицы, из которых состоят кварки внутри протонов, любые из множества суперпартнеров известных частиц, требуемых теорией суперсимметрии, новые типы взаимодействий, связанные с новыми внутренними симметриями и т.п. Мы не знаем, существуют ли перечисленные частицы и явления, и если они существуют, могут ли они быть открыты на ССК. Поэтому ободряющим является уже то, что мы заранее знаем по крайней мере об одном открытии огромного значения, которое можно совершить на ССК, – установлении механизма нарушения электрослабой симметрии.
После того, как министерство энергетики приняло решение о строительстве ССК, несколько лет ушло на планирование и проектирование, прежде чем смогло начаться само строительство. На основании давнего опыта известно, что хотя такое предприятие и спонсируется федеральным правительством, руководство им лучше всего осуществляется частными агентствами, поэтому министерство энергетики передало управление исследовательскими и конструкторскими работами университетской исследовательской ассоциации, некоммерческому консорциуму из шестидесяти девяти университетов, уже руководившему в свое время постройкой Лаборатории им. Ферми. Ассоциация в свою очередь привлекла университетских специалистов и ученых из промышленности в совет наблюдателей за постройкой ССК. Этот совет передал полномочия по детальной разработке конструкции ускорителя центральной конструкторской группе в Беркли, которую возглавил Маури Тайгнер из Корнеллского университета. К апрелю 1986 г. центральная конструкторская группа завершила проектирование. Ускоритель должен был представлять собой туннель диаметром три метра, образующий овал длиной 83 км, в котором должны были ускоряться летящие в противоположных направлениях два тоненьких протонных пучка энергией 20 триллионов электрон-вольт. Протоны удерживались на своей траектории 3 840 отклоняющими магнитами (длиной 17 м каждый) и фокусировались другими 888 магнитами. В целом, на все магниты должно было уйти 41 500 т железа и 19 400 километров сверхпроводящего кабеля. Они должны были охлаждаться 2 миллионами литров жидкого гелия.