Как я уже упоминал, всякое научное объяснение имеет дело с дедукцией, выводом одной истины из другой. Но в объяснении заключено, с одной стороны, нечто большее, чем просто дедукция, а с другой стороны, нечто меньшее. Простой вывод одного утверждения из другого с помощью законов логики не обязательно содержит объяснение, и это ясно видно в тех случаях, когда оба утверждения могут быть выведены друг из друга. Эйнштейн пришел к заключению о существовании фотонов в 1905 г., исходя из успешной теории теплового излучения, предложенной пятью годами ранее Максом Планком; девятнадцать лет спустя Сатьендра Нат Бозе показал, что теорию Планка можно вывести из эйнштейновской теории фотонов. Объяснение, в противоположность выводу, дает поразительное ощущение направления. У нас возникает захватывающее чувство, что фотонная теория света более фундаментальна, чем любое другое утверждение, касающееся теплового излучения, и поэтому именно она является объяснением свойств такого излучения. Точно так же Ньютон вывел свои знаменитые законы, частично пользуясь ранее установленными законами Кеплера, описывающими движение планет Солнечной системы[15], но тем не менее мы утверждаем, что законы Ньютона объясняют законы Кеплера, но не наоборот.
Разговоры о более фундаментальных истинах очень нервируют философов. Можно сказать, что более фундаментальные истины это те, которые в определенном смысле более всеобъемлющи, но и здесь трудно дать точные формулировки. Однако ученые оказались бы в плохом положении, если бы ограничились использованием только тех понятий, которые уже получили удовлетворительное философское объяснение. Ни один работающий физик не сомневается, что законы Ньютона более фундаментальны, чем законы Кеплера, или что теория фотонов Эйнштейна более фундаментальна, чем теория теплового излучения Планка.
И все же научное объяснение может быть и чем-то меньшим, чем дедукция, так как мы можем утверждать, что какой-то факт объясняется некоторым принципом, хотя мы не в силах вывести этот факт из данного принципа. Используя законы квантовой механики, мы можем вывести различные свойства простейших атомов и молекул и даже оценить уровни энергии сложных молекул, вроде молекул карбоната кальция в меле. Химик из Беркли Генри Шефер говорит, что «при разумном применении общепринятых методов теоретической физики ко множеству задач о поведении молекул, даже таких больших, как молекула нафталина, получаемые результаты можно рассматривать точно так же, как добытые в заслуживающем доверия эксперименте»