Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы (Вайнберг) - страница 71

В определенном смысле с самого начала имелось огромное количество экспериментальных данных в поддержку ОТО, а именно наблюдения траекторий движения Земли вокруг Солнца, Луны вокруг Земли, а также все остальные детальные измерения в Солнечной системе, начатые еще Тихо Браге и его предшественниками и уже объясненные ньютоновской теорией. На первый взгляд подобные свидетельства могут показаться очень странными. Ведь мы не просто говорим о свидетельствах в пользу ОТО, заключающихся в сделанных задним числом вычислениях планетных движений, уже измеренных к тому времени, когда была создана теория. Нет, мы говорим сейчас об астрономических наблюдениях, не только сделанных до того, как Эйнштейн сформулировал свою теорию, но уже объясненных другой теорией, созданной Ньютоном. Как же может быть, чтобы успешное предсказание или объяснение задним числом подобных наблюдений могло расцениваться как триумф именно общей теории относительности?

Чтобы это понять, нам нужно повнимательнее присмотреться к теориям Ньютона и Эйнштейна. Ньютоновская физика сумела объяснить практически все наблюдаемые движения в Солнечной системе, однако сделала это ценой введения ряда довольно произвольных предположений. Например, рассмотрим закон, утверждающий, что сила тяготения, действующая со стороны некоторого тела на другое тело, убывает как квадрат расстояния между ними. В теории Ньютона нет ничего, что принуждало бы к выбору именно закона обратных квадратов. Сам Ньютон предложил этот закон, чтобы объяснить известные факты, касающиеся Солнечной системы, например закон Кеплера, связывающий размеры орбит планет со временем их обращения вокруг Солнца. Если же не обращать внимания на данные наблюдений, то в теории Ньютона можно заменить закон обратных квадратов законом обратных кубов или законом с показателем степени 2,01 в знаменателе без малейшего ущерба для основ самой теории[80]. Изменились бы лишь мелкие детали. Теория Эйнштейна значительно менее произвольна, она очень жестко построена. Если рассматривать медленно движущиеся тела в слабом гравитационном поле, когда мы, собственно, и можем говорить об обычной силе тяготения, то из уравнений общей теории относительности вытекает, что сила обязана уменьшаться по закону обратных квадратов. Невозможно без насилия над основными положениями теории так изменить ОТО, чтобы получить вместо закона обратных квадратов какую-то иную зависимость силы тяготения от расстояния.

Далее, как особо подчеркивал Эйнштейн в своих работах, тот факт, что сила тяготения, действующая на тело малых размеров, пропорциональна только массе этого тела и не зависит ни от каких других его свойств, выглядит в теории Ньютона достаточно произвольным. В рамках этой теории гравитационная сила могла бы зависеть от размеров, формы или химического состава тела, и это не привело бы к потрясению основ. В теории Эйнштейна сила тяготения, действующая на тело,