Теорема Лапласа (Бетёв) - страница 56

Сколько, сколько, сколько…

На многие из этих вопросов Иван Петрович ответил сразу. Для ответа на другие требовались новые уточнения.

И только когда иссякли вопросы у математиков, удалось заговорить Ивану Петровичу. Он хотел уяснить для себя предполагаемую работу.

– Втолкуйте мне, пожалуйста, что вы собираетесь делать. Теория вероятности или относительности для меня то же самое, что и туманность Андромеды, а дело, как видите, самое земное…

– Сейчас втолкуем, – пообещал кто-то из них. – Мы сможем, например, совершенно точно определить степень вероятности по интересующему вас вопросу…

Ивану Петровичу захотелось свистнуть, но другой преподаватель поправил своего товарища:

– Мы скажем вам приблизительное число билетов, которое нужно было иметь для того или иного количества выигрышей.

– Вот это ближе к делу, – воспрянул Иван Петрович.

– Вероятность все-таки останется вероятностью…

– Вот это плохо… – сразу огорчился Упоров.

– Почему? – спросил Стихин.

– Да потому, что опять ничего определенного.

– Самое обидное утверждение для математиков, между прочим, – улыбнулся Стихин. – Математика – очень конкретная наука. Я приведу вам пример, о котором пишет в своей книге «Математическая статистика в технике» очень эрудированный математик Длин. Случай этот Длин взял из воспоминаний известного французского философа Дидро. Однажды в Неаполе какой-то уроженец Базиликота в присутствии аббата Галиани встряхнул три кости в стаканчике и держал пари, что выбросит три шестерки, и действительно все три кости выпали шестерками.

– Это невозможно, – раздались тогда голоса.

Но игрок бросил кости во второй раз, и зрители увидели то же самое. Так он проделывал несколько раз подряд, и неизменно появлялись три шестерки.

– Черт побери! – воскликнул тогда аббат. – Кости фальшивые!

И они действительно оказались фальшивыми.

– Весьма убедительно, – сказал Иван Петрович. – А что, тот аббат был математиком?..

– Во всяком случае образованным человеком. А в то время образованные люди математику знали обязательно…

– И он понимал, – сказал уже другой преподаватель, – что если один выигрыш еще вероятен, то пять подобных невероятны. Грубо говоря, здесь речь ведется как раз о степени вероятности. Что касается математики, то для подобных обстоятельств в ней есть даже конкретная формула.

– Теорема Лапласа?

– Да. Она, пожалуй, самая подходящая… Разговор вели между собой уже математики. Но Иван Петрович все-таки вмешался:

– Там кости, товарищи, а у меня государственные лотерейные билеты. В костях еще и поднатореть можно…

– Тем более! И все-таки, как видите, выигрыш в такой степени был невероятен!..