Компьютерра, 2008 № 22 (738) (Журнал «Компьютерра») - страница 16

История развития полупроводниковых диодов и лазеров длится без малого полвека. За это время было придумано, изготовлено и доведено до совершенства множество самых разных устройств, но основной принцип излучения света в большинстве из них всегда оставался неизменным. Фотон в полупроводниковом диоде или лазере испускается при аннигиляции электрона и дырки. Разумеется, встречается и экзотика вроде полупроводниковых лазеров на квантовых каскадах, но они погоды не делают.

А поскольку из обычного механизма испускания света полупроводником уже выжали практически все что можно, ученые давно присматриваются к другим возможностям. И одно из интересных направлений радикального улучшения диодов и лазеров — это использование поляритонов. Поляритонами обычно называют составные квазичастицы, объединяющие в себе фотон и квант возбуждения среды. В полупроводниках такими квантами являются экситоны — пары из электрона и дырки. То есть поляритон — это довольно экзотический тройственный союз фотона, электрона и дырки.


Поскольку поляритон уже наполовину свет и ему гораздо легче, чем экситону, окончательно превратиться в фотон, теория обещает, что поляритонные лазеры должны обладать массой замечательных свойств. Это и большая эффективность, высокое быстродействие, низкий порог лазерной генерации и целый ряд других полезных характеристик. Но в то же время поляритон весьма нежная частица, которую легко развалить тепловым шумом. Поэтому досих пор эксперименты с поляритонными излучателями проводились при очень низких температурах. Кроме того, в экспериментах поляритоны, как правило, возбуждали с помощью накачки другим лазером. Эти два неудобства сразу сводят на нет всякую выгоду от применения поляритонных устройств.

В новом светодиоде греческих ученых поляритоны возбуждаются, как и в обычном светодиоде, электрическим током. Работает светодиод при температуре всего -38 градусов Цельсия, которая уже не так безнадежно далека от вожделенной комнатной температуры. Светодиод изготовлен из арсенида галлия с добавками индия и алюминия с помощью обычной эпитаксии молекулярным пучком. Он имеет слоистую цилиндрическую структуру, образующую резонансную микрополость, которая настроена так, чтобы эффективно удерживать поляритоны. Стенки полости представляют собой квантовые ямы для экситонов, которые тесно взаимодействуют с фотонами. Электрический ток течет вдоль цилиндра, а фотоны в результате излучаются прямо из полости.

Пока новый диод не бьет никаких рекордов, но уже первые эксперименты обещают его высокую эффективность, малое энергопотребление и на порядок более низкий порог лазерной генерации. Сейчас ученые сосредоточились над повышением рабочей температуры диода до комнатной. Это должно окончательно развеять все сомнения в перспективности использования поляритонов. ГА