Компьютерра, 2006 № 15 (635) (Журнал «Компьютерра») - страница 14

Жизнедеятельность клетки основана на отточенных взаимодействиях отдельных молекул. Химическое узнавание обеспечивается тончайшим соответствием формы и распределения зарядов на молекулярных поверхностях. Один из главных путей регуляции активности клеточных роботов — ферментов — основан на изменении их конформации (пространственного расположения частей). Цитоскелет, целесообразно достраиваясь из стандартных блоков, обеспечивает транспорт и взаимодействие молекул… До технологического уровня клетки как целого нам пока не подняться, а вот вирусы и другие молекулярно-генетические инфекционные системы уже представляют интерес для нанотехнологов. Фактически, вирус — это наноробот. Одни его функциональные блоки обеспечивают фиксацию на необходимых объектах, другие — управляют его синтезом и самосборкой. Заставить бы вирусы выполнять необходимые для нас нанотехнологические процессы!

Один из первых результатов такого рода получен в Массачусетском технологическом институте группой профессора Анжелы Белчер (Angela Belcher). Пока что вирусы удалось приспособить для создания высококачественных, но однородных по своим свойствам поверхностей — электродов для литий-полимерных аккумуляторов. Вирусы были генетически модифицированы, чтобы придать их поверхностным рецепторам сродство к необходимым молекулам (в частности, ионам кобальта). Такие вирусы высадили на пластины электролита и погрузили в раствор соли кобальта. В итоге «строители» сформировали рыхлый слой оксида кобальта с исключительно большой удельной поверхностью. Энергоемкость собранной на таких электродах батареи будет значительно выше стандартных значений.

Лиха беда — начало. Значение этой новости не только в появлении новой технологии производства (при комнатной температуре!) поверхностей с заданными свойствами. Разместив на поверхности вируса рецепторы к двум различным молекулам (а это относительно несложно сделать методами генной инженерии), можно заставить его соединять эти молекулы с нанотехнологической точностью. В запасе группы профессора Белчер — вирусы, покрывающие себя полупроводниками, а затем высаживающиеся на золотые электроды. После получения первых образцов этих наноинструментов их производство не вызывает затруднений — в подходящей среде (клетках) они размножаются сами! Из принципиальных затруднений, которые осталось преодолеть для сборки микросхем, главное — разработка методов точного позиционирования мест прикрепления вирусов-сборщиков. Указывая несущим различные молекулы вирусам их положение на поверхности сборки, можно было бы создавать схемы в соответствии с определенным планом. Способы получения такой размеченной поверхности могут быть различными. Вероятно, идеологии «нанотехнологической заразы» более всего соответствует использование мембраны генетически модифицированной живой клетки.