Эгоистичный ген (Докинз) - страница 99

Но можно ли ожидать, что бедная машина выживания будет способна произвести эти сложные вычисления, да еще в спешке [6.6]! Даже великий матбиолог Дж. Холдейн (в опубликованной в 1955 г. работе, где он предвосхитил концепцию Гамильтона, постулировав распространение гена, детерминирующего спасение тонущих родственников) заметил: «…в тех двух случаях, когда я вытаскивал из воды с минимальнейшим риском для себя людей, которые могли бы утонуть, у меня не было никакого времени на подобные вычисления». К счастью, как это хорошо знал Холдейн, предполагать, что машины выживания сознательно производят в уме вычисления, нет необходимости. Совершенно так же, как мы применяем логарифмическую линейку, не сознавая, что мы на самом деле используем логарифмы, животное может быть запрограммировано таким образом, что оно ведет себя, как если бы оно производило сложные вычисления.

Вообразить это не столь уж сложно, как может показаться. Когда человек подбрасывает мяч высоко в воздух и вновь ловит его, он ведет себя так, как если бы он решал систему дифференциальных уравнений, определяющих траекторию мяча. Он может не знать, что такое дифференциальное уравнение, и не стремиться узнать, но это никак не отражается на его искусстве играть с мячом. На каком-то подсознательном уровне происходит что-то, равноценное математическим вычислениям. Точно так же, когда человек принимает трудное решение, предварительно взвесив все «за» и «против» и все последствия своего решения, которые он может вообразить, его действия функционально равноценны вычислению «взвешенной суммы», производимому компьютером.

Если бы нам надо было составить программу, моделирующую на компьютере поведение образцовой машины выживания, которая принимает решения о том, следует ли ей вести себя альтруистически, мы, вероятно, действовали бы примерно следующим образом. Сначала надо составить список всех альтернативных типов поведения животного. Затем для каждого типа поведения составить программу вычисления взвешенной суммы. Все выигрыши, получаемые в результате поведения данного типа, помечаются знаком плюс, а все связанные с ним риски — знаком минус; все выигрыши и все риски перед суммированием следует взвесить путем умножения на соответствующий коэффициент родства. Для простоты мы можем прежде всего не проводить другие взвешивания, например связанные с возрастом и состоянием здоровья. Поскольку коэффициент родства данного индивидуума с самим собой равен 1 (т. е. он содержит, как это совершенно очевидно, 100%-собственных генов), риски и выигрыши для самого себя вообще не надо снижать, и в вычисления они должны входить с полным весом. Общая сумма для каждого из альтернативных типов поведения будет выглядеть следующим образом: