Математика, Философия и Йога (Меррелл-Вольф) - страница 23

Помимо того, я пересек мысленным взором весь мир и заглянул в чужие земли, чтобы увидеть Шанкару-математика из математиков, который еще мальчиком скитался по всей Индии и вызывал смятение у браминов; он уводил мужей от жен, так как те становились его саньясинами. По каким-то непонятным причинам женам это очень не нравилось, но выбора не было – оставалась только возможность примкнуть к рядам победителя. Взмахивая волшебной палочкой своей логики, этот человек заставил мир зримых проявлений исчезнуть, и на месте этого мира не осталось ничего, кроме Бога.

Вот пример его могущественной логики. Шанкара говорил, что, когда человек осознает иллюзорность определенного явления, это явление не только прекращает существование, но и лишается права на существование когда бы то ни было. Возможно, вам будет проще понять это, если такое переживание сравнить со зрелищем миража в пустыне. Путешествуя по пескам, вы видите прекрасное озеро. Иссушающая жара заставляет воду выглядеть особенно освежающей. Вы идете к озеру до тех пор, пока не замечаете некую странность, и тогда понимаете, что видите мираж. Что произошло с озером, когда оно было осознано как мираж? Оно просто исчезло в тот момент или же оно перестало быть когда бы то ни было? Вот еще один пример: вы идете по той же пустыне, замечаете змею и отпрыгиваете в сторону. Затем вы понимаете, что это просто палка, кусок веревки или какой-то другой похожий на змею предмет. Что случилось со змеей? Она просто исчезла в тот момент или перестала существовать во все времена? Подумайте об этом.

Вчера вечером я изложил вам две теории о природе математики. Одну называют логицизмом, а другую формализмом; первая связана с именем Рассела, вторая-со школой Гильберта. Существует и третья, современная теория, которую называют математическим интуиционизмом (хотя не очень ясно, почему она получила именно такое название). Это направление было развито, в первую очередь, Брауэром и Вейлем [4], которые заложили важнейшие основы современной математической мысли. Они сомневаются даже в допустимости приложения метода исключения к рассуждениям о бесконечности, хотя большая часть теории бесконечных множеств опиралась на определенные принципы, часто используемые в обычной математике [5]. Иногда случается так, что вы не можете непосредственно доказать некий факт, но при этом знаете, что существует ограниченное количество возможных вариантов -например, только два. Скажем, любое число может быть либо простым, либо не простым. Если не получается непосредственно доказать, что выбранное число является простым, то это можно сделать методом от противного, то есть показать, что оно не является не простым. Брауэр и Вейль считают, что этот принцип, подразумевающий суждение об исключении третьего, становится недопустимым в оценке бесконечных классов. В любом случае, подобное мнение может иметь достаточно важное значение. Однако я хочу показать вам, что среди самих математиков нет общего согласия в отношении окончательной природы того, с чем они имеют дело. То же относится и к логике: в ней все согласны с принципами подробного процесса, с тем, как следует подходить к рассматриваемому вопросу, но возникают расхождения во мнениях об окончательном содержании самого вопроса. Таким образом, мы сталкиваемся с различными взглядами на основополагающий характер самой математики.