Один на один с врагом: русская школа рукопашного боя (Кадочников) - страница 23

Кажется, к этому нечего добавить. Однако в действительности оказывается, что представление о степенях свободы складывается совсем не просто. Известный ученый-биолог Бернштейн Н. А, великолепно владевший умением рассказывать просто о сложных явлениях, в своей популярной книге о природе движения[3] пишет:

«Современная техника создала машины огромной сложности, способные совершенно самостоятельно, без участия человека, выполнять самые разнообразные и непростые операции. И самое поразительное, что все эти машины-автоматы при их сложности и изобилии подвижных частей имеют по одной-единственной степени свободы, т. е. обладают тем, что в технике называют вынужденным движением. Это значит, что каждая движущаяся точка в этих машинах, каждая деталь рычага, тяги или колеса движется все время по одному и тому же строго определенному пути. Форма этого пути может быть очень разнообразной: у одних точек – круговой, у других – прямолинейной, у третьих – овальной и т. д., но с этого пути движущаяся точка не сходит никогда. Таким образом, машины-автоматы в смысле своей подвижности принадлежат к числу самых простых систем, какие только могут существовать».

Н. А. Бернштейн


Утверждение об «одной единственной степени свободы» машины-автомата нуждается в оговорке.

Не стоит, по-видимому, говорить о подвижности машины-автомата вообще, в целом, а следует говорить только о подвижности какой-то движущейся детали этой машины.

И тогда здесь, на первый взгляд, обнаруживается некоторое противоречие. Если точка В (рис. 2) движется по дуге окружности в плоскости ХОY, то ее положение в каждый момент времени описывается двумя независимыми координатами x>B, y>B. Казалось бы, точка В имеет две степени свободы. Но это справедливо только для свободного движения. Если же движение является вынужденным, например, возвратно-поступательным, и «с этого пути движущаяся точка не сходит никогда», то эта точка имеет одну степень свободы.

Рис. 2


Вернемся к образным рассуждениям Бернштейна:

«Если бы какая-нибудь часть такой машины получила вместо одной две степени свободы, это совсем не значило бы, что на ее долю вместо одного достались два или даже несколько возможных путей-траекторий. Нет, это означало бы, что даная часть машины получила возможность „разгуливать“ по какой-то поверхности. Если я возьму перо и стану водить им по поверхности листа бумаги, то, какие бы фигуры ни вздумалось мне им изображать, я нигде не превышу своих возможностей по части дозволенных кончику пера двух степеней свободы, пока буду водить его без отрыва от бумаги. Этот переход от одной степени свободы к двум означает, таким образом, огромный качественный скачок от одной-единственной, точно определенной дорожки-траектории к бесконечному и вполне произвольному разнообразию таких дорожек… Три степени свободы вместо двух дают еще больше, хотя на этот раз не происходит такого огромного качественного скачка, как при переходе от одной к двум степеням свободы… Для пояснения надо сказать, что совершенно ничем не связанная точка, например, вольно порхающая в воздухе снежинка, не может иметь больше трех степеней свободы».