При решении практических задач очень часто оказывается, что в данных условиях движения никак нельзя пренебречь размерами тела. Тот же океанский лайнер при исследовании воздействия на него водной стихии (например, при бортовой и килевой качке) материальной точкой уже никак не назовешь, его следует рассматривать как тело конечных размеров.
Рис. 3
По этой причине в механике вводится еще одна модель – абсолютно твердое тело, то есть тело конечных размеров, которое ни при каких условиях не деформируется (не изменяет свою форму и размеры).
Эта модель существенно отличается от предыдущей. Она позволяет любое движение тела рассматривать как комбинацию поступательного и вращательного движений.
Следовательно, если твердое тело свободно движется в трехмерном пространстве, то оно получает дополнительные три степени свободы, а именно: свободы вращения (поворота) тела относительно каждой из осей координат. А это означает, что всякое твердое тело по сравнению с материальной точкой обладает шестью степенями свободы.
Перемещения тела при поступательном и вращательном движениях измеряются различно. При поступательном движении их можно определить по линейному перемещению любой точки тела, например, его центра масс (ЦМ), в неподвижной системе координат.[4] А при вращательном движении – по углу поворота тела относительно соответствующей координатной оси. Для измерения углов в центре масс тела помещают начало другой, подвижной системы координат, оси которой первоначально ориентированы так же, как и оси неподвижной системы. При повороте тела положение осей этой связанной системы координат относительно неподвижной системы определяется тремя углами.
Так, например, при изучении движения самолета в трехмерном пространстве (рис. 3) рассматривают:
• во-первых, движение его центра масс как материальной точки с массой, равной массе самолета, в неподвижной (земной) системе координат XYZ;
• во-вторых, поворот самолета как твердого тела конечных размеров относительно центра масс.
Положение осей связанной системы хyz, а следовательно, и повороты самолета в земной системе координат определяются тремя углами: φх, φy, φz.
И, наконец, в механике часто используется еще одно модельное представление: связанная система тел – совокупность материальных точек или тел – рассматриваемая как единое целое. Такая система имеет общий центр масс, а число степеней свободы системы обусловливается количеством связей между отдельными ее частями.
Рис. 4
Житейским и понятным примером такой модели может служить автомобиль, кузов и колеса которого образуют взаимосвязанную механическую систему.