Психодиагностика (Лучинин) - страница 48

(см. критерий X>2). Наиболее часто в таких расчетах пользуются коэффициентом сопряженности Пирсона:

Значение P всегда положительно и измеряется от нуля до единицы. Особенностью коэффициента сопряженности Пирсона является то, что максимальное его значение всегда меньше +1 и в значительной степени зависит от количества наблюдений (размера таблицы). В случае квадратной таблицы (k × k):

Так, в таблице размером (5 × 5) P>max = 0,894; в таблице (10 × 10) Р>max = 0,949. Поэтому окончательной формой выражения связи между переменными с помощью коэффициента Пирсона является его отношение к величине Р>max для данного случая (Р / Р>max).

При расчете сопряженности находит применение также коэффициент Чупрова:

где t – число столбцов таблицы;

k – число строк таблицы.

В психологической диагностике описанные коэффициенты используются относительно редко.

3. Ранговая корреляция

Ранговая корреляция – метод корреляционного анализа, отражающий отношения переменных, упорядоченных по возрастанию их значения. Наиболее часто ранговая корреляция применяется для анализа связи между признаками, измеряемыми в порядковых шкалах (см. шкалы измерительные), а также как один из методов определения корреляции качественных признаков. Достоинством коэффициентов ранговой корреляции является возможность их использования независимо от характера распределения коррелирующих признаков.

В практике наиболее часто применяются такие ранговые меры связи, как коэффициенты ранговой корреляции Спирмена и Кендалла. Первым этапом расчета коэффициентов ранговой корреляции является ранжирование рядов переменных (табл. 2). Процедура ранжирования начинается с расположения переменных по возрастанию их значений. Разным значениям присваиваются ранги, обозначаемые натуральными числами. Если встречается несколько равных по значению переменных, им присваивается усредненный ранг.

Таблица 2
Ранжирование распределения показателей теста (n = 18)

В таблице 2 приведены данные для расчета коэффициентов ранговой корреляции. Во второй графе представлены ранжированные показатели по первому из сравниваемых распределений (оценка IQ, в третьей графе – соответствующие им данные теста зрительной памяти).

Коэффициент корреляции рангов Спирмена (r>s) определяется из уравнения:

где d>i – разности между рангами каждой переменной из пар значений X и Y;

n – число сопоставляемых пар.

Используя данные таблицы 2, получаем:

Коэффициент корреляции рангов Кендалла τ определяется следующей формулой:

где Р и Q рассчитываются по таблице 12.

Так, в восьмой графе подсчитывается, начиная с первого объекта X, сколько раз его ранг по Y меньше, чем ранг объектов, расположенных ниже. Соответственно, в девятой графе (S