и Землю, на которой мы живем, и далекие небесные светила. В самом деле: каким способом, на каких весах могли взвесить Землю и небо?
Рис. 87. На каких весах могли взвесить Землю?
Начнем со взвешивания Земли. Прежде всего отдадим себе отчет, что следует понимать под словами «вес земного шара». Весом тела мы называем давление, которое оно оказывает на свою опору, или натяжение, которое оно производит на точку привеса. Ни то, ни другое к земному шару неприменимо: Земля ни на что не опирается, ни к чему не привешена. Значит, в таком смысле земной шар не имеет веса. Что же определили ученые, «взвесив» Землю? Они определили ее массу. В сущности, когда мы просим отвесить нам в лавке 1 кг сахара, нас нисколько ведь не интересует сила, с какой этот сахар давит на опору или натягивает нить привеса. В сахаре нас интересует другое: мы думаем лишь о том, сколько стаканов чая можно с ним выпить, другими словами, нас интересует количество заключающегося в нем вещества.
Но для измерения количества вещества существует только один способ: найти, с какой силой тело притягивается Землей. Мы принимаем, что равным массам отвечают равные количества вещества, а о массе тела судим только по силе его притяжения, так как притяжение пропорционально массе.
Переходя к весу Земли, мы скажем, что «вес» ее определится, если станет известна ее масса; итак, задачу определения веса Земли надо понимать как задачу исчисления ее массы.
Рис. 88. Один из способов определения массы Земли: весы Йолли
Опишем один из способов ее решения (способ Йолли, 1871). На рис. 88 вы видите очень чувствительные чашечные весы, в которых к каждому концу коромысла подвешены две легкие чашки: верхняя и нижняя. Расстояние от верхней до нижней 20–25 см. На правую нижнюю чашку кладем сферический груз массой m>v Для равновесия на левую верхнюю чашку положим груз т>т Эти грузы не равны, так как, находясь на разной высоте, они с разной силой притягиваются Землей. Если под правую нижнюю чашку подвести большой свинцовый шар с массой М, то равновесие весов нарушится, так как масса m>l будет притягиваться массой свинцового шара М с силой F>v пропорциональной произведению этих масс и обратно пропорциональной квадрату расстояния d, разделяющего их центры:
где к – так называемая постоянная тяготения.
Чтобы восстановить нарушенное равновесие, положим на верхнюю левую чашку весов малый груз массой п. Сила, с которой он давит на чашку весов, равна его весу, т. е. равна силе притяжения этого груза массой всей Земли. Эта сила F равна
Пренебрегая тем ничтожным влиянием, которое присутствие свинцового шара оказывает на грузы, лежащие на верхней левой чашке, мы можем написать условие равновесия в следующем виде: