Занимательная астрономия (Перельман) - страница 109

и т на расстоянии D выразится согласно закону всемирного тяготения так:



Если М – масса Солнца (в граммах), т – масса Земли, D – расстояние между ними, равное 150 000 000 км, то взаимное их притяжение в миллиграммах равно (1/15 000 000)х(15 000 000 000 000>2)мг[50] С другой стороны, эта сила притяжения есть та центростремительная сила, которая удерживает нашу планету на ее орбите и которая по правилам механики равна (тоже в миллиграммах) mV>2/D, где т – масса Земли (в граммах), V – ее круговая скорость, равная 30 км/с = 3 000 000 см/с, a D – расстояние от Земли до Солнца. Следовательно,



Из этого уравнения определяется неизвестное М (выраженное, как сказано, в граммах):

М=2х10>33г = 2х10>27т.

Разделив эту массу на массу земного шара, т. е. вычислив



получаем 1/3 миллиона.

Другой способ определения массы Солнца основан на использовании третьего закона Кеплера. Из закона всемирного тяготения третий закон выводится в следующей форме:



где 



 – масса Солнца, Т – звездный период обращения планеты, а – среднее расстояние планеты от Солнца им– масса планеты. Применяя этот закон к Земле и Луне, получим



Подставляя известные из наблюдений



 и пренебрегая в первом приближении в числителе массой Земли, малой по сравнению с массой Солнца, а в знаменателе массой Луны, малой по сравнению с массой Земли, получим



Зная массу Земли, получим массу Солнца.

Итак, Солнце тяжелее Земли в треть миллиона раз. Нетрудно вычислить и среднюю плотность солнечного шара: для этого нужно лишь его массу разделить на объем. Оказывается, что плотность Солнца примерно в четыре раза меньше плотности Земли.

Что же касается массы Луны, то, как выразился один астроном, «хотя она к нам ближе всех других небесных тел, взвесить ее труднее, чем Нептун, самую далекую (тогда) планету». У Луны нет спутника, который помог бы вычислить ее массу, как вычислили мы сейчас массу Солнца. Ученым пришлось прибегнуть к другим, более сложным методам, из которых упомянем только один. Он состоит в том, что сравнивают высоту прилива, производимого Солнцем, и прилива, порождаемого Луной.

Высота прилива зависит от массы и расстояния порождающего его тела, а так как масса и расстояние Солнца известны, расстояние Луны – тоже, то из сравнения высоты приливов и определяется масса Луны. Мы еще вернемся к этому расчету, когда будем говорить о приливах. Здесь сообщим лишь окончательный результат: масса Луны составляет 1/81 массы Земли (рис. 89).

Зная диаметр Луны, вычислим ее объем; он оказывается в 49 раз меньшим объема Земли. Поэтому средняя плотность нашего спутника составляет 49/81 =0,6 плотности Земли.