Карманная школа (Кривин) - страница 16

Чуть свет — уже начинает:

— Вспомни, кем ты была. Уже ночь, а он все еще:

— Не забудь, кем ты стала.

Не выдержала Пятерка.

— Лучше уж, — говорит, — я простой Пятеркой буду, чем так радоваться.

И ушла от Ноля.

Остался Ноль в одиночестве и не поймет: что случилось? Так хорошо жили, и вот — покинула его Пятерка. За что, скажите пожалуйста?

А ему, Нолю, теперь, как никогда, подруга нужна. Стар он стал, здоровье совсем сдало. Еле-еле нашел себе какую-то Двойку. Горбатенькая Двойка, кривая, но все-таки цифра!

Долго Поль соображал, долго прикидывал, как бы и на этот раз маху не дать. Выведал, с кем Двойка в задачнике встречалась, как вела себя в таблице умножения, какие у нее были плюсы и минусы. Узнал, что Двойка ведет дневник, в дневник заглянул. В дневнике тоже было все в порядке: двойка как двойка, к тому же по математике.

«Пора закругляться!» — решил Ноль. И сразу приступил к действию.

— Давайте соединимся!

— Ишь, старый хрыч! Если хочешь сложиться, так и говори, а нет — проваливай.

— Я сложусь, я сложусь, — заторопился Ноль. — Я всегда готов, ты не сомневайся!

Так и сложились они:

2 + 0.

Два плюс Ноль… А чему же равняется?

2 + 0 = 2

Вот и доигрался Ноль, домудрился. Нет Ноля. Конец ему пришел.

Даже мелкие цифры, которые всегда ниже Ноля стояли, и те не удержались:

— Ну и дурак был этот Ноль! Круглый дурак!

ТОЧКА НА ПЛОСКОСТИ

Не знала Точка ни забот, ни тревог, но пришло время и ей подумать о своем месте на плос-

кости.

— Я хочу стать центром окружности! — заявила Точка.

Что ж, по законам геометрии все точки равны и каждая из них может стать центром окружности. Для этого нужны только циркуль и карандаш, и ничего больше.

Но едва лишь к ней прикоснулся циркуль, Точка завопила:

— Ой! Больно! Ой! Что вы колетесь?!

— Но вы хотели стать центром окружности, — напомнил Циркуль.

— Не нужен мне ваш центр, не нужна мне ваша окружность, оставьте меня в покое!

Оставили Точку в покое. Но ненадолго. Должна же Точка занять какое-то место на плоскости!

— Я хочу стать вершиной угла, — заявила Точка на этот раз.

По законам геометрии вершиной угла тоже может стать каждая точка. Для этою на прямую, на которой она находится, достаточно опустить перпендикуляр.

Стали опускать на прямую перпендикуляр.

— Вы что, ослепли?! — закричала Точка при виде Перпендикуляра. — Вы падаете прямо на меня. Разве вам мало места на плоскости?

Растерялся Перпендикуляр, повис в воздухе.

— Погодите, дайте-ка мне, — сказала Секущая. — У меня эта Точка станет вершиной сразу четырех углов.

Но не тут-то было. При виде Секущей Точка прямо-таки забилась в истерике.