Если вы когда-нибудь использовали программное обеспечение для ввода произносимого вслух текста на персональном компьютере, тогда вы знаете, насколько бесполезным оно бывает. Как и в эксперименте с «Китайской комнатой», компьютер не понимает того, о чем идет речь. Несколько раз я пробовал использовать подобные приложения и всегда впадал в уныние. Если в комнате появлялся какой-то посторонний шум, от стука упавшего карандаша до голоса человека, обращающегося ко мне, то на экране сразу же возникали посторонние слова. Процент ошибок распознания речи был очень высок. Часто слова, которые, как предполагала программа, я произнес, вообще не были связанными по смыслу. Даже ребенок понял бы, что в предложении ошибки, но не компьютер. Так называемый интерфейс естественной речи многие годы был целью инженеров, занимающихся разработкой программного обеспечения. Суть состоит в том, чтобы вы могли сказать машине, чего вы от нее хотите, обычным языком, и она бы выполнила ваши команды. Личной цифровой записной книжке вы могли бы сказать: «Перенеси дочкину игру по баскетболу с субботы на сегодня, на десять утра». Подобного рода вещи невозможно было сделать с помощью традиционного искусственного интеллекта. Даже если бы компьютер распознал каждое слово, для выполнения задания ему нужно знать, где находится школа вашей дочери, какую именно субботу вы имели в виду, и, вообще, что такое баскетбольная игра, поскольку у вас может быть занесена информация как «Ментло против Сен-Джо». Или вы хотите, чтобы компьютер слушал радиопередачи и сканировал звуковой поток на предмет упоминания в нем определенного товара, а рассказчик будет описывать свой запрос, не упоминая его названия. Вы и я поймем, о чем он говорит, но этого не поймет компьютер. Подобные приложения требуют, чтобы машина могла не только слушать, но и слышать разговорную речь, что пока не достижимо. Программа распознания речи соотносит звуковые сигналы с шаблонами слов, внесенных в память путем механического запоминания, не учитывая их значения. Представьте, что вы бы научились распознавать звучание отдельных слов на каком-то иностранном языке, не зная их значения. Я вас попрошу записать разговор на этом языке. Во время разговора вы понятия не имеете, о чем он, но пытаетесь распознать отдельные слова и записать их. Но в какой-то момент многие слова перекрываются, или частично неслышны, или появляется какой-то посторонний шум. Вам будет чрезвычайно сложно распознавать слова и вычленить их. Именно с такого рода препятствиями сталкиваются современные программы по распознаванию человеческой речи. Их разработчики обнаружили, что, используя вероятность и переход слов, они могут несколько улучшить качество распознавания. Например, чтобы решить, какой из омонимов нужно выбрать, они используют правила грамматики. Это очень простая форма прогнозирования, однако системы в данном случае остаются немыми. Современные программы по распознаванию речи работают успешно лишь в очень ограниченных ситуациях, когда количество слов, которые человек может произнести в каждое отдельное мгновение, строго ограничено. А вот людям распознание речи дается без труда, потому что неокортекс не только воспринимает отдельные слова, но и предугадывает содержание целых предложений, а также рамки общего контекста. В процессе распознания устной речи мы прогнозируем идеи, фразы, отдельные слова, мало того – кора головного мозга выполняет всю эту работу автоматически.