Об интеллекте (Блейксли, Хокинс) - страница 20

, сосредоточились на изучении того, какие типы поведения генерируют различные нейронные комбинации. Мозг состоит из нейронов, стало быть, мозг – это нейронная сеть. Задачи коннекционистов состояли в том, чтобы изучить неуловимые свойства разума путем изучения взаимодействия нейронов. Они рассчитывали, правильно воссоздав связи между группами нейронов, тем самым приблизиться к решению задач, которых не смог одолеть искусственный интеллект. Нейронные сети отличаются от компьютеров тем, что у них нет центрального микропроцессора и они не сохраняют информацию в центральном блоке памяти. Информация, занесенная в память нейронной сети, сосредоточена в связях – точно так же, как и в головном мозге человека.

На первый взгляд, разработка нейронных сетей полностью соответствовала сфере моих научных интересов. Однако на тот момент я четко видел три фактора, критических для понимания работы мозга.

Во-первых, в исследования мозга следует включать временной критерий, ведь скорость обработки потока информации чрезвычайно высока. Данные, поступающие в мозг и исходящие из него, никогда не пребывают в статическом состоянии. Во-вторых, мозг насквозь пронизан обратными связями. Например, обмен между неокортексом и таламусом, главным подкорковым центром, направляющим импульсы всех видов чувствительности (температурной, болевой и др.) к стволу мозга, подкорковым узлам и коре больших полушарий, построен таким образом, что количество обратных связей превышает количество исходящих почти в десять раз! Это значит, что на каждое волокно, подающее информацию в неокортекс, приходится десять волокон, отправляющих обратную информацию к органам чувств. Обратная связь также является превалирующей формой связи между нейронами внутри неокортекса. Роль обратной связи пока что до конца не изучена, но с уверенностью можно сказать, что эта связь вездесуща. Для нас это очень важно.

Наконец, в-третьих, любая модель (или теория мозга) должна соответствовать биологическому строению живого мозга. У неокортекса очень сложное строение, которое, как мы увидим позже, представляет собой повторяющуюся иерархию. Любая нейронная сеть, не имеющая таковой, не сможет воссоздать работу мозга.

Первые нейронные сети представляли собой крайне упрощенные v модели, которые не удовлетворяли ни одному из трех описанных выше требований. Большинство из них были трехслойными. Входной слой нейронов служил для ввода значений входных переменных. Нейроны этого слоя были связаны с нейронами промежуточного слоя, так называемыми скрытыми элементами. Скрытые элементы были связаны с последним слоем нейронов – элементами выхода. Связи между нейронами имели переменную силу. Это означало, что активность внутри одного нейрона могла усилить активность внутри второго и ослабить активность внутри третьего – в зависимости от силы связей. Изменяя силу связей, можно было «обучить» нейронную сеть соотношению входящих данных с исходящими.