к первичным зонам зрительного восприятия намного больше информации, чем
получают ее от взгляда, бегущего по строкам книги! Ниже мы еще коснемся вопроса обратной передачи информации. А теперь – внимание: хотя иерархия строения коры головного мозга действительно существует, не стоит считать, что информационные потоки всегда движутся одними и теми же путями.
Вернемся к нашему воображаемому секционному столу Допустим, у нас есть очень мощный микроскоп. Мы сделали небольшой срез коры головного мозга, нанесли краску на несколько нервных клеток и рассматриваем их под микроскопом. Если бы мы окрасили все нейроны, то увидели бы однородную черную массу, поскольку клетки очень плотно прилегают друг к другу. Но, окрасив лишь небольшую их часть, мы сможем увидеть шестислойную структуру, о которой упоминалось выше. Слои различаются по типам и плотности составляющих их нейронов, а также по характеру связей между ними.
Рассмотрим строение нейрона. Любая нервная клетка состоит из тела клетки, или сомы, и двух типов внешних древоподобных ветвей: аксона («передатчика») и дендритов («приемников»). Тело клетки включает ядро, которое содержит информацию о наследственных свойствах, и плазму, обладающую молекулярными средствами для производства необходимых нейрону материалов. Нейрон получает сигналы (импульсы) от других нейронов через дендриты и передает сигналы, сгенерированные телом клетки, вдоль аксона, который в конце разветвляется на волокна. На окончаниях этих волокон находятся синапсы. Синапсы (от греч. synapsis – соединение, связь) – это специализированные функциональные контакты между возбудимыми клетками, служащие для передачи и преобразования сигналов.
Нервный импульс – это процесс распространения возбуждения по аксону от тела клетки до окончания аксона. Некоторые аксоны имеют обратное действие, таким образом подавляя возбуждение клетки. Итак, по функциональному значению синапсы могут быть возбуждающими и тормозящими – в зависимости от того, активируют они или подавляют деятельность соответствующей клетки. В зависимости от поведения двух клеток сила синапса может изменяться. Наиболее простая форма синаптического обмена имеет место, когда два нейрона создают возбуждение почти одновременно, а сила взаимодействия между ними возрастает. Исследователь нейронных сетей Дональд Хебб предположил, что синаптическая связь, соединяющая два нейрона, будет усиливаться, если в процессе обучения нейронной сети оба нейрона согласованно испытывают возбуждение либо торможение. Простой алгоритм, реализующий такой механизм обучения, получил название