Рис. 146 — отрицательный спин электрона. Движение сгустка материи в краевой зоне искривления пространства первого типа.
1. Электрон.
3. Краевая зона искривления пространства первого типа.
Рис. 146а — положительный спин электрона. Движение сгустка материи в краевой зоне искривления пространства второго типа.
2. Электрон.
4. Краевая зона искривления пространства второго типа.
Рис. 147 — образование электронной пары при соединении атомов в молекулы.
1. Электрон, имеющий отрицательный спин.
2. Электрон, имеющий положительный спин.
3. Краевая зона искривления первого типа.
4. Краевая зона искривления второго типа.
Соединяясь в молекулы, создавая кристаллические решётки, атомы переходят в более устойчивое состояние. Особенно интересны создаваемые атомами кристаллические решётки. Разные типы кристаллических решёток, имеющие особенности электронных систем, образуют собой три группы: проводники, полупроводники и изоляторы. Различие свойств связано со степенью устойчивости электронных структур.
У проводников общие электронные системы нестабильны, постоянно образуются и распадаются. Вся такая система постоянно находится в движении, правда это движение хаотично. Если тем или иным способом создать направленное воздействие на проводники (приложить напряжение), возникает электрический ток.
Но, что самое интересное, электроны не двигаются в проводнике. Внешнее воздействие (поле) увеличивает степень неустойчивости электронов, они распадаются и материи, их образующие, перетекают на эфирный уровень, где продолжают подвергаться воздействию внешнего поля. Внешнее поле вынуждает перетекать эти материи в определённом направлении (внешнее воздействие [поле] влияет на мерность микрокосмоса атомов, что и приводит к перетеканию материй на эфирный план).
При таком вынужденном перетекании эти материи теряют часть своей энергии, что приводит к новому слиянию материи в очередной зоне искривления микрокосмоса атомов. Электрон вновь синтезируется. Таким образом, движение электронов вдоль проводника есть периодическое перетекание материй, их образующих, с физического уровня на эфирный и обратно.
Именно поэтому при соединении в единое целое кристаллических решёток разных типов, (как в случае полупроводников) и при создании необходимых внешних условий, проявляется так называемый, туннельный эффект. Когда расстояние между точкой распада и точкой синтеза электронов составляет от доли миллиметра до нескольких миллиметров. При этом в этом промежутке — зона «затишья» — не происходит перетекание материй с физического уровня на эфирный и обратно. Это явление возникает при резком отличии электронных структур кристаллических решёток, образующих полупроводник (см. Рис. 148).