Если в начале своей эволюции звезда имела большую массу, но меньше десяти солнечных масс, то к концу своей жизни она вызывает вторичное вырождение мерности, когда мерность окружающего её пространства становится меньше мерности λ>7.
Δλ ≈ 0.0102018…
Λ>6 < λ>d < λ>7; λ>d = λ>a - Δλ
Она производит прогиб в другую сторону. Возникает, так называемая, нейтронная звезда (см. Рис. 158). Если в начале своей эволюции звезда имела массу большую, чем десять солнечных, вторичное вырождение становится столь значительным, что вызывает смыкание пространств-вселенных с мерностями λ>7 и λ>6 (см. Рис. 159). При этом материя из пространства с мерностью λ>7 начинает перетекать в пространство с мерностью λ>6. Образуется «чёрная дыра». Таким образом, «чёрные дыры» возникают и в ходе эволюции звёзд.
А теперь рассмотрим также и природу образования планетарных систем.
В начале своей жизни звезда имеет баланс между её размером, каналом между пространствами с мерностями λ>8 и λ>7 и количеством вещества, перетекающего через эту звезду из пространства с мерностью λ>8 (см. Рис. 160). В результате термоядерных реакций при потере простых атомов, размеры звезды уменьшаются, и она не в состоянии пропустить через себя всю массу материй, текущих из пространства с мерностью λ>8 в пространство с мерностью λ>7.
Рис. 160 — в ходе эволюции звезды возникают такие качественные состояния звезды, когда её поверхность не в состоянии пропустить через себя всю массу материй, движущихся через зону смыкания пространств. Часть массы материй начинает скапливаться в зоне смыкания пространств по одну сторону перехода.
λ>6 — мерность пространства-вселенной, образованного слиянием шести форм материй.
λ>7 — мерность пространства-вселенной, образованного слиянием семи форм материй.
λ>8 — мерность пространства-вселенной, образованного слиянием восьми форм материй.
λ>c — мерность красного гиганта.
Этот дисбаланс со временем увеличивается и достигает в конечном итоге критического уровня. Происходит колоссальный взрыв, часть вещества звезды выбрасывается в окружающее её пространство. При этом уменьшается мерность этого окружающего звезду пространства и формируется канал, по которому перетекает такое количество материи, которое звезда в состоянии через себя пропустить (см. Рис. 161). Астрономы называют этот взрыв — взрывом сверхновой звезды.
Рис. 161 — взрыв сверхновой звезды, при котором происходит деформация окружающего её пространства и выброс огромных масс скопившейся материи. При взрыве сверхновой происходит выброс поверхностных слоёв звезды, которые состоят в основном из лёгких элементов. Выброс вещества звезды приводит к зарождению планет в зонах деформации пространства, возникшего в момент взрыва. Причём, более тяжёлые элементы «выпадают» ближе к самой звезде. В результате этого ближние планеты в большей степени состоят из тяжёлых элементов, в то время, как удалённые планеты — в основном из лёгких. Солнечная система — прекрасный пример этому.