, обладают замечательным свойством. Между их периодом и светимостью существует однозначная связь (рис. Б.2). Период изменения блеска цефеид легко установить с помощью регулярных наблюдений, и тогда нетрудно, зная показанную на рис. Б.2 закономерность, определить их светимость, среднюю за период. А сравнивая светимость с блеском звезды, легко вычислить расстояние до нее. Цефеиды обладают очень высокой светимостью, поэтому их можно наблюдать не только в самых отдаленных уголках нашего Млечного Пути, но и среди звезд других галактик. Благодаря этому удалось определить расстояние от нашей собственной Галактики, до галактик, лежащих дальше от нас, чем Туманность Андромеды.
Рис. Б.2. Диаграмма период — светимость переменных звезд типа цефеид. У этих звезд определенному значению периода соответствует вполне определенная светимость. Поскольку период определить легко, нетрудно, зная период, вычислить и светимость звезды, усредненную за период. Зная светимость звезды и ее видимую величину (блеск), можно определить расстояние до звезды.
Приложение В
Как взвешивают звезды
Несмотря на то что современная техника подарила астрономам точнейшие измерительные устройства и позволила им применять в своих расчетах компьютеры, при определении звездных масс астрономы не продвинулись далеко от методов, восходящих еще к Иоганну Кеплеру и Исааку Ньютону, методов, которым уже триста лет. Начнем с массы Солнца. В поле силы тяжести Солнца Земля движется почти по круговой орбите. При этом она испытывает действие центробежной силы, стремящейся отбросить ее в пространство. Центробежная сила действует против притяжения Земли Солнцем — силы, которая стремится обрушить нашу планету в центр огненного солнечного шара. Земля движется точно по такой траектории, на которой эти противодействующие силы находятся в равновесии. Условие равновесия этих сил дает возможность определить силу, с которой Земля притягивается Солнцем, а, следовательно, и массу последнего по формуле
(радиус орбиты планеты)>3 = (гравитационная постоянная) х (масса планеты + масса Солнца) х (период обращения планеты)>2.
Значение гравитационной постоянной известно из физики. Радиус орбиты Земли определяется методом, описанным в приложении Б. Период обращения Земли вокруг Солнца равен одному году. Таким образом, наше уравнение содержит только одно неизвестное, сумму масс Земли и Солнца, и его нетрудно решить. Так как масса Земли ничтожна по сравнению с массой Солнца, эта сумма практически равна массе Солнца.
А как обстоит дело с массами других звезд? С двойными звездами, которые можно разделить с помощью телескопа (иначе говоря, которые наблюдаются в телескоп как звездная пара), можно поступить точно так же. Разница только в том, что здесь два тела обращаются относительно друг друга и массы их различаются не так сильно, как массы Земли и Солнца. Существенным становится то, чем мы пренебрегли в предыдущем случае: здесь не одно тело обращается вокруг другого, а каждое из них обращается вокруг их общего центра масс. Итак, для двух звезд — обозначим их А и В в двойной системе справедливо соотношение