Возможность оперировать с поверхностями (пространствами) произвольной размерности исключительно важна для понимания свойств и характеристик физического пространства (об этом речь пойдет в следующих главах).
В заключение еще одно замечание. Утверждение, что локально поверхность эквивалентна евклидову пространству, означает, что в любой точке интервал можно привести к виду
N
— ds**2 = > dx|**2 (8)
— i
i=1
Такие поверхности называются римановыми и обладают свойством ds**2 > 0 (положительно определенная матрица).
Теория относительности внесла коррективы в это определение. Эта теория выдвинула идею нового типа пространств — пространств Минковского когда интервал ds**2 может иметь оба знака (ds**2 ≥ 0 или ds**2 ≤ 0), метрика таких пространств называется индефинитной, а сами пространства псевдоевклидовыми.
Метрика псевдоевклидовых пространств размерности N имеет вид:
N| N|
1 2
- — ds**2 = > dx|**2 — > dx|**2 (9)
— i — k
i=1 k=1
причем N|+N|=N. Обобщением псевдоевклидова пространства
1 2 является псевдориманово пространство, которое локально представляется псевдоевклидовой метрикой.
7. РАССЛОЕННЫЕ ПРОСТРАНСТВА
Уже упоминалось ранее, что точка иногда определяется как геометрический объект, не имеющий протяженности. Поэтому напрашивался вывод, что точка в таком понимании не имеет структуры. Однако критический анализ основных понятий геометрии, а также внутренние, имманентные законы развития дифференциальной геометрии стимулировали создание и развитие нового математического образа — расслоенного пространства. Первые работы, в которых формировались основные понятия расслоенных пространств и их связи с другими разделами математики, относятся к 30 — 50-м годам и принадлежат выдающимся математикам: Э.Картану, Х.Уитни, Ш.Эресману, Ш.Черну.
Вначале казалось, что этой новой ветви математики уготована участь многих ее разделов: служить красивой абстракцией, не связанной с физической реальностью. Основания для подобных прогнозов были. Фундаментальное понятие точки у расслоенных пространств отличалось от интуитивного образа бесструктурной точки. Однако эволюция физики, и в первую очередь квантовой теории поля, физики элементарных частиц и космологии, привела к сближению представлений о точках в физике и расслоенных пространствах. Постепенно начал вырисовываться абрис синтеза фундаментальной физики и геометрии на базе расслоенных пространств. По нашему мнению, можно высказать и более сильное утверждение: существует «истинное» физическое пространство, которое реализуется в терминах расслоенных пространств.