Здесь уместно напомнить основные свойства инерциальных систем отсчета. В этих системах законы ньютона имеют наиболее простой вид (отсутствуют силы инерции). Все механические явления, происходящие в двух инерциальных системах, движущихся с постоянной скоростью друг относительно друга, протекают одинаково.
Иначе говоря, законы движения в двух инерциальных системах координат инвариантны при переходе от одной системы отсчета к другой. Отмеченную инвариантность уместно выразить на языке линейных преобразований. Для простоты ограничимся двумерным евклидовым пространством. Пусть в инерциальной системе I точка (событие) представлена координатами x>I, y>I, а система II (координаты x>II, y>II) движется с постоянной скоростью v относительно системы I. Тогда из свойств евклидова пространства и инерциальных систем отсчета следует, что уравнения движения в этих системах должны быть инвариантны относительно замены:
x| = x| cos ALPHA + y| sin ALPHA + vt cos BETA + a, 2 1 1
y|= — x| sin ALPHA + y| cos ALPHA + vt sin BETA + b, (12) 2 1 1
где ALPHA — произвольный угол поворота системы отсчета I, BETA — угол между направлениями O|O| и O|x|. Постоянные a и
1 2 2 2 b отражают однородность (трансляционную инвариантность) евклидова пространства. Условие (12) является обобщением аналитического определения статического евклидова пространства. Евклидово пространство однородно и изотропно. Следовательно, при произвольном преобразовании декартовой системы координат осуществляются соотношения:
x| = x| cos ALPHA + y| sin ALPHA + a, 2 1 1
y|= — x| sin ALPHA + y| cos ALPHA + b, (13) 2 1 1
Таким образом, инерциальные системы отсчета — основа динамики — являются обобщением статического евклидова пространства. Это обобщение отражается включением членов, содержащих множитель vt, обуславливающих равноправие всех инерциальных систем отсчета.[6]
Пожалуй, интересно отметить, что в течение многих столетий доминировала механика, в которой допустимые преобразования представлялись соотношениями (13). Эта механика была унаследована от Аристотеля, который полагал, что любое движение (в том числе и равномерное) обусловлено внешним воздействием. Потому в рамках такой механики существовала единственная привилегированная система отсчета — та, к которой тело покоилось. Естественно, что геометрия, соответствующая подобной механике, была тождественна геометрии Евклида.
Преобразование (12) подчеркивает особенность классической механики. Время t и скорость v никак не связаны с пространственными координатами и могут принимать любые значения. Поэтому, хотя пространство, представленное геометрией Евклида, имеет определенную метрику (в данном случае x**2 + y**2 = const), совокупность времени и пространственных координат такой определенной метрикой не обладает.