≡=РИС. 4
Отметим прежде всего, что теория относительности существенно изменяет наши повседневные представления о прошлом, будущем и настоящем. Из-за конечности скорости света c причинно-следственные связи определены лишь при значении интервала s≥0. Чтобы представить себе наглядно неопределенно неопределенность ситуации при s<0, допустим, что в момент чтения книги в отдаленной части галактики произошел взрыв звезды, а читатель никак не ощутил этот взрыв и не имеет возможности получить о нем какую-либо информацию. Это типичный пример, отражающий ситуацию при s<0.
Графически можно можно все пространство-время (x,t) разделить на четыре области (рис. 4). Пусть две пересекающиеся линии соответствуют уравнениям x = ±ct. Тогда области внутри угла AOB соответствуют будущему; внутри угла COD — прошлому, а углам AOC и BOD — неопределенной ситуации, которая в общем случае зависит от движения системы отсчета. В этом смысле надо понимать сделанное выше замечание относительно тезиса Аристотеля (отсутствие настоящего). Настоящее, соответствующее одновременно происходящим в разных точках пространства событиям, есть понятие относительное. Оно зависит от движения системы отсчета.
Рассмотрим далее преобразование координаты x и времени t при переходе от одной системы отсчета (x,t) к другой (x',t'), движущейся со скоростью v относительно первой.
Условие, определяющее это преобразование, инвариантность интервала s=s'. Это условие определяет преобразование, которое является единственным с точностью до тривиального переноса начала системы отсчета
x' = x ch ψ + ct sh ψ,
(24) ct' = x sh ψ + ct ch ψ,
ψ — аналог угла поворота декартовой системы в евклидовом пространстве (ср. с преобразованием (13)). В формуле (24) ch и ch — гиперболические функции в отличие от обычных тригонометрических функций в соотношении (13). Эта разница определяется тем, что в евклидовом (двумерном) пространстве Inv = x**2 + y**2 — окружность, а в псевдоевклидовом пространстве Inv = t**2 — x**2 — гипербола.
Положим для простоты x=0. Это допущение не уменьшает общности рассуждений, однако сильно упрощает выкладки. Тогда
x' = ct sh ψ, ct' = ct ch ψ. (25)
Учитывая, что x'/t'=v, из (25) следует, что th ψ = v/c. Используя известные соотношения для гиперболических функций, легко получить
sh ψ = (v/c) [1-(v/c)**2]**(-1/2),
(26) ch ψ = [1-(v/c)**2]**(-1/2),
после чего из формул (24) и (26) следуют преобразования Лоренца:
x+vt x' = —--------,
-------,
\/ 1-(v/c)**2
(27)
t+vx/c**2 t' = —--------.
-------,
\/ 1-(v/c)**2
Из соотношений (27) следует: