1. При v/c<<1 преобразования Лоренца переходят в преобразования Галилея (12).
2. Интервалы длины и времени преобразуются соответственно:
^x ^x' = —--------,
-------,
\/ 1-(v/c)**2
(28)
^t ^t' = —--------.
-------,
\/ 1-(v/c)**2
Наметим далее вывод из метрических свойств пространства Минковского уравнения движения материальной точки
p=mu, (29)
где u — скорость частицы.
В ньютоновской механике v = dx/dt; m=const (t абсолютное время). Чтобы обобщить импульс в рамках теории относительности, нужно проделать две операции, специфические для теории относительности: 1) условиться о системе отсчета, в которой определяется время; 2) обобщить 3-мерные векторы ньютоновской физики на 4-мерное пространство Минковского. Иначе говоря, следует ввести 4-мерный вектор, который при v/c — > 0 переходил бы в 3-мерный евклидов вектор, а в рамках теории относительности был бы аналогом 4-вектора (t,x,y,z). Найдем 4-мерный аналог скорости v=dx/dt. В русле идей теории относительности существует выделенная (собственная) система отсчета, связанная с материальной точкой. Действительно, в этой системе величина dx=const и время t=τ однозначно связано с инвариантным интервалом ds. В том же случае, когда тело «истинно» точечное (dx=0), то ds=c d τ. Поэтому естественно в формуле для скорости положить
u=dx/d τ (23)
и на основании (23)
v|||||
x,y,z u||||| = —--------, x,y,z —-----,
\/ 1-(v/c)**2
где индексы x, y, z отмечают компоненты по соответствующим осям.
Чтобы величина u была бы 4-вектором, нужно доопределить четвертую компоненту. В нашем распоряжении есть единственная величина, имеющая размерность скорости: скорость света c. Поэтому аналог временной компоненты 4-скорости:
c u| = —--------. (32) t —-----,
\/ 1-(v/c)**2
Тогда выражение (29) для импульса можно записать в форме
p| = m|u|, i 0 i
ult m| — масса в собственной системе отсчета. Индекс i
0 отмечает номер компоненты 4-скорости. Легко проверить, что величины p| (i=1,2,3,4 или t,x,y,z) образуют 4-вектор.
i Действительно,
(p|)**2 — (p|)**2 — (p|)**2 — (p|)**2 = (m|c)**2 = Inv. (34) t x y z 0
По существу (34) есть частное следствие общего определения пространства Минковского: квадрат 4-вектора инвариант относительно поворотов и трансляций в этом пространстве. Другим важнейшим примером этого правила является инвариантность интервала. Отличие от векторного определения пространства Евклида сводится к правилу знаков: квадрат временно-подобной компоненты берется со знаком «+», а квадраты пространственно-подобных компонент — со знаком «-». Если потребовать сохранения формы (29) для выражения импульса в релятивистской механике через обычную скорость, то следует изменить определение массы, положив