m m = —--------. (35)
-------,
\/ 1-(v/c)**2
Все выводы релятивистской динамики, и в частности формулы (33) — (35), превосходно согласуются с экспериментальными данными, полученными на ускорителях. Точнее, они служат основой для конструирования больших ускорителей, образуя новую область, лежащую на стыке фундаментальной физики и инженерных дисциплин: релятивистскую инженерную физику.
5. ЭЙНШТЕЙНОВСКАЯ ТЕОРИЯ ТЯГОТЕНИЯ
Специальная теория относительности, геометрический образ которой воплощен в пространстве Минковского, вызывает невольные ассоциации с величайшими творениями искусства. Сочетание величия человеческого духа и лаконичности придают этой теории те качества, которые отличают настоящие ценности.
Тем не менее специальная теория относительности отражение законов природы и поэтому, как и вся физические принципы, характеризуется определенными границами. Произведение искусства — автономно, научная теория неизбежно ограничена невидимыми (а зачастую и зримыми) проявлениями прогресса экспериментальной физики и логикой.
И у специальной теории относительности есть границы применимости. Они проявляются довольно отчетлива, однако (и в этом одна из причуд истории науки) их не принято детально обсуждать. В этом нет, вероятно, никакой злонамеренности. подобная ситуация имеет простую психологическую подоплеку. В первые десятилетия после создания теории относительности у нее существовало столько принципиальных и беспринципных противников, что борьба велась не по линии теории ценных деталей, а по вопросу: быть или не быть теории относительности. И когда экспериментальные данные блестяще подтвердили специальную теорию относительности, а ее противники оказались полными банкротами, в общественном мнении возобладала антитеза отрицания — ее полная абсолютизация.
Однако беспристрастный анализ продемонстрировал, что и у специальной теории есть свои проблемы, которые частично были блестяще использованы Эйнштейном при создании общей теории относительности, а частично вообще ускользнули из поля зрения научной общественности.
Для того, чтобы изложить эти проблемы, мы будем опираться на мысленные эксперименты, которые так часто «проводились» в начале столетия. В частности, на них опирался Эйнштейн в процессе создания теории относительности.
Трудно скрыть известную ностальгию по этой почти ушедшей эре, когда в физике царила наглядность, а формальные аспекты были на втором плане. К сожалению, в науке не всегда возможен стиль «ретро», но все-таки будем стремиться к максимальной наглядности. Вообразим систему отсчета, в которой движутся два тела (1 и 2) с разными скоростями. Тогда в области расположения тела 1 в соответствии с формулами (28) о сокращении масштабов пространство будет искажено: его однородность будет нарушена. Следовательно, будет нарушено основное условие определения инерциальной системы отсчета. Фактически многочастичное макроскопическое тело своим объемом нарушает однородность и изотропию пространства. Тем самым подрываются основы определения инерциальной системы координат. Макроскопическое (неточечное) тело нарушает свойства пространства Минковского: его однородность и изотропию. Поэтому становится проблематичным его использование для описания макроскопического тела.