Геометрия, динамика, вселенная (Розенталь) - страница 43

Чтобы оценить масштабы масс, при которых происходит объединение, следует приравнять выражения ALPHA|, ALPHA|,

w s ALHPA| значению ALPHA|~0.01, которое (как мы отмечали ранее)

g e можно полагать постоянной. Тогда получаем следующие значения масс, объединяющих различные взаимодействия (см. таблицу).

Значение массы, при Объединение взаимодействий котором происходят

объединения (m|)

p

Электромагнитное-слабое 10**2 Электромагнитное-слабое-сильное 10**15 Электромагнитное-слабое-сильное-гра- 10**19

витационное

Из этой таблицы следует ряд примечательных следствий. Во-первых, объединение трех и четырех взаимодействий в принципе возможно, поскольку существуют значения масс, при которых происходит слияние трех и четырех констант. Во-вторых, в объединенных теориях возникают огромные масштабы масс — 10**15 m| и 10**19 m|. Например, для

p p представления об этих величинах достаточно напомнить, что гипотетический кольцевой ускоритель с размером, равным диаметру Земли, мог бы ускорять частицы до энергии ~10**7 m|. И наконец, третье: электрослабое взаимодействие p характеризуется «человеческими» масштабами: ~100 m|. Эти

p энергии уже достижимы на самых больших современных ускорителях. И действительно, в 1983 г. на ускорителе ЦЕРНа — Коллайдере были открыты переносчики слабого взаимодействия

± 0 — W||- и Z|-бозоны со значениями масс, точно соответствующими теории Глешоу-Вайнберга-Салама, описывающей это взаимодействие.

Следует, пожалуй, пояснить причину возникновения масштабов масс в теориях, объединяющих электромагнитное, слабое и сильное взаимодействия (большое объединение) и все четыре взаимодействия (супергравитация). В большом объединении этот масштаб возникает из-за вялой, логарифмической зависимости ALPHA|(m) (см. (40)).

s Приравнивая ALPHA| = ALHPA|, получаем массу объединения

s e m|≈10**15 m|. Масштаб характерной массы супергравитации x p (объединении всех взаимодействий) — следствие малости постоянной Ньютона, обуславливающей в свою очередь малость значения ALPHA| в низкоэнергетическом пределе: m~m|.

g p

Перейдем далее к определению общности свойств функций, описывающих состояние систем. Разумеется, речь идет о фундаментальных свойствах, общих для всех систем достаточно широкого класса (например, материальных точек).

На математическом языке это означает, что уравнения, определяющие изменение функций состояния во времени, инвариантны относительно определенных групповых преобразований.` Простейшим примером такой инвариантности является трансляционная инвариантность. Простейшим примером такой инвариантности является трансляционная инвариантность уравнений Ньютона. Ни уравнения, ни физическое состояние системы не меняются при замене x' — > x+a, где a — некое постоянное число. Можно привести и другой пример групповой инвариантности. Рассмотренное ранее в гл.1 вращение системы координат также оставляет уравнения механики инвариантными. Группа, соответствующая вращению N-мерной сферы, называется группой вращения. Можно сказать, что уравнения механики (впрочем, это относится также и к электродинамике, хромодинамике и ко всем взаимодействиям, кроме гравитационного) инвариантны относительно преобразований группы трехмерных вращений, что отвечает изотропии трехмерного пространства Евклида.