До сих пор мы почти одновременно говорили о совместной геометрической интерпретации электромагнитного и гравитационного взаимодействий и существовании других (слабого и сильного) взаимодействий, которые как будто не укладываются в схему Калуцы.
Ранее указывалось, что решение этой проблемы появилось в результате создания теории взаимодействия кварков (квантовая хромодинамика) и успехов в объединении электромагнитного и слабого взаимодействий (теория Глешоу Вайнберга — Салама). Наша формулировка неточна. На самом деле квантовая хромодинамика не вошла в арсенал достижений физики как теория, интерпретирующая взаимодействие кварков.
Оказалось, что уравнения Янга — миллса хорошо хорошо описывают взаимодействие кварков в определенных границах, которые по существу являются пределами применимости квантовой хромодинамики. Частица со свойствами, весьма близкими к частице Янга — Миллса, получила название глюона и оказалась переносчиком сильного взаимодействия между кварками (см. Дополнение).
В основе теории Янга — Миллса лежат калибровочные соотношения
i g T(x) 1 ∂ a PSIG' = Ψ e||||||||, A' — > A + [aA] —- —--, (55)
g ∂ x
g=const, a=a(x).
Соотношения (55) определяют уравнения Янга — Миллса и очень похожи на условия (48), (49) калибровочной инвариантности в электродинамике. Однако есть и два существенных отличия: 1) в уравнениях (55) T(x) не число, а квадратная матрица и 2) в условие преобразования вектор-потенциала A входит дополнительный член [a,A] (наличие такого члена приводит к тому, что вектор A не только инвариантен относительно смещения, но и относительно вращения в изотопическом пространстве). Эти две, казалось бы, несущественные особенности радикально отличают уравнения Янга — Миллса от уравнений электродинамики.
Отметим в них то, что нам потребуется в дальнейшем. Во-первых, свойства матриц T существенно отличаются от свойств алгебраических чисел ALPHA. Числа характеризуются свойствами коммутативности (ALPHA|ALPHA| — ALPHA|ALPHA| =
1 2 2 1 0). Матрицы этим свойством не обладают (вообще говоря, T|T| — T|T| ≠ 0). 1 2 2 1
Инвариантность (55) функции Ψ требует введения уже
1 не одномерного пространства S|, а многомерного. Например, если матрица T двумерна, то соответствующее ей пространства
3 — трехмерная сфера S|. Соотношение между размерностями матрицы (n) и соответствующего ей пространства (N) определяется квантовомеханическим условием унитарности: N=n**2–1 (n≥2).
Для понимания дальнейшего целесообразно вначале ограничиться геометрической интерпретацией электрослабого взаимодействия.