Геометрия, динамика, вселенная (Розенталь) - страница 89

8. СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ

ОБ «ИСТИННОМ» ФИЗИЧЕСКОМ

ПРОСТРАНСТВЕ

Подведем некоторые итоги. Работа Эренфеста, демонстрирующая, что в пространствах с размерностью N≥4 отсутствуют аналоги планет и атомов, и трактуемая изолированно от всего прогресса физики, может рассматриваться как некая экзотика. Однако этот курьез превращается в основополагающий факт, если его рассматривать в свете многочисленных приложений принципа целесообразности и антропного принципа, а также геометрической интерпретации калибровочных теорий.

Большая неустойчивость структуры Метагалактики к численным значениям многих фундаментальных постоянных и их флюктуативность в рядах подобных им величин может быть интерпретирована на единственной физической основе. Эта основа (если ее не связывать с вмешательством провидения) базируется на гипотезе существования большого ансамбля метагалактик со своими значениями фундаментальных постоянных, в том числе и размерности физического пространства N. Эти константы формируются в момент возникновения метагалактик`. Наблюдаемое значение размерности — лишь проявление случайных процессов, сопровождающих рождение метагалактик. Размерность N и другие «истинные» характеристики физического пространства проявляются либо вблизи планковской области, либо при расстояниях, превышающих размеры Метагалактики (10**28 см). Физическое (наблюдаемое) пространство формируется одновременно с другими характеристиками Метагалактики при временах 0 < t| ~< 10**-43 с. Здесь нужно подчеркнуть одно

u важное, принципиальное обстоятельство. Оставаясь лишь в рамках математических представлений и закрывая глаза на многочисленные связи между константами, их флюктуативность и проблемы объединения теории поля, мы можем считать оба современных описания физической реальности при N=3 (стандартный формализм Лагранжа) и N>3 (многомерная теория типа Калуцы) равноправными. Сейчас отсутствуют противоречия между экспериментальными данными об элементарных частицах и их описанием, основанным на привычном лагранжевом формализме в пространстве Минковского (Римана) с размерностью пространственных координат N=3. Однако возникло слишком много вопросов, которые такая теория не способна объяснить, чтобы их можно было игнорировать.[22]

В настоящее время единственный способ решить эти вопросы — допустить, что на малых (планковских) расстояниях истинное физическое пространство имеет сложную структуру. Кажется наиболее естественным, что эта структура в первом приближении моделируется пространствами типа Калуца-Клейна. Сейчас говорят о компактных сферических пространствах с размерностью d=6 или 7, но представляется почти очевидным, что подобное представление о физическом пространстве отражает лишь уровень нашего понимания законов природы. В действительности эти пространства могут иметь существенно более сложную структуру природу и более высокую размерность. Возможно, что говорить о конкретной размерности в планковской области бессмысленно. В этой области, вероятно, все флюктуирует, изменяется во времени и можно говорить лишь об очень грубо усредненных величинах. Нельзя, например, исключить, что в планковской области размерность имеет дробное значение. Чтобы понять это утверждение, вообразим ситуацию, когда близорукий человек издалека рассматривает сильно изрезанный холмистый берег. Ему этот берег покажется одномерной линией. Однако по мере приближения к берегу (или при использовании оптических приборов) будут становиться все более различимыми его неровные контуры, очертания холмов. Рельеф (а следовательно, и размерность) будет зависеть от ракурса и расстояния до берега. Усредняя «измеренную» размерность по всем ракурсам и расстояниям, можно получить нецелое число.