Математика. Поиск истины. (Клайн) - страница 41

Еще одна отличительная особенность математики — идеализация. Математик идеализирует, намеренно отвлекаясь от толщины меловой линии при рассмотрении прямых или принимая Землю при решении некоторых задач за идеальную сферу. Сама по себе идеализация не является серьезным отступлением от реальности, но при любой попытке приложить ее к реальности возникает вопрос, достаточно ли близок исследуемый объект (например, реальная частица или траектория) к его идеальному образу.

Наиболее поразительной особенностью математики является используемый ею метод рассуждения. Основу его составляет набор аксиом и применение к этим аксиомам дедуктивного доказательства (вывода). Слово «аксиома» происходит от греческого «мыслить подобающим образом». Само понятие аксиомы — истины, столь самоочевидной, что она ни у кого не вызывает сомнения, — введено греками. Платоновское учение об анамнезисе утверждала, что люди обладают априорным знанием истин, почерпнутым их душами в объективном мире истин, и что аксиомы геометрии представляют собой воспоминания о некогда известных истинах. Аристотель во «Второй аналитике» упоминает об «общих [положениях], называемых нами аксиомами, из которых, как первичного, ведется доказательство» ([8], с. 200), истинность которых мы постигаем своей безошибочной интуицией. Если бы в доказательстве использовались какие-то факты, не известные нам как истины, то потребовалось бы дополнительное доказательство, которое устанавливало бы эти факты, и этот процесс пришлось бы повторять бесконечно. Аристотель также указывал на то, что некоторые понятия должны оставаться неопределяемыми, ибо в противном случае доказательство не имело бы начала. В наше время такие понятия, как точка и прямая, остаются неопределяемыми. Их значение и свойства зависят от аксиом, предписывающих свойства «точек» и «прямых».

Подобно тому как многие используемые в математике понятия изобретены человеческим разумом, аксиомы об этих понятиях изобретены с таким расчетом, чтобы понятия раскрывали те или иные стороны реальности. Например, аксиомы для отрицательных и комплексных чисел с необходимостью должны отличаться от аксиом для положительных чисел или последние должны по крайней мере допускать обобщения, охватывающие отрицательные и комплексные числа. Разумеется, аксиоматизация более новых понятий требует более тонкого подхода, поэтому правильные аксиоматические обоснования некоторых областей математики удалось создать лишь через много лет после возникновения этих областей.

Помимо математических аксиом значительную часть лепты, вносимой математикой в наш физический мир, должно составлять и физическое знание. Оно может принимать форму физических аксиом (например, законов движения Ньютона), обобщений экспериментальных наблюдений или чистой интуиции. Эти физические допущения формулируются на языке математики, что позволяет применять к ним математические аксиомы и теоремы.