Математика. Поиск истины. (Клайн) - страница 43

треугольника равна 180°.

В описанном нами дедуктивном процессе для обоснования рассуждения используется логика. При этом, по существу, мы до сих пор применяем так называемую аристотелеву логику. Естественно спросить, почему заключения, полученные с помощью такой логики, должны иметь какое-то отношение к природе. Почему теоремы, доказанные человеческим разумом в тиши кабинетов, должны быть применимы к реальному миру, как, впрочем, и аксиомы, которые во многих случаях являются не более чем измышлениями того же человеческого разума? К вопросу о том, почему математика столь эффективна, мы вернемся в гл. XII.

Необходимо отметить еще одну важную характерную черту математики: использование специальных обозначений. Хотя страница, испещренная математическими символами, способна отпугнуть непосвященного, нельзя не признать, что без специальных обозначений математики погрязли бы в неразберихе слов. Все мы используем те или иные символы, когда прибегаем к множеству общепризнанных сокращений. Например, мы часто пишем N.Y., вместо New York (Нью-Йорк), и, хотя смысл таких аббревиатур нужно знать заранее, не подлежит сомнению, что краткость символики способствует постижению сути дела, в то время как словесное выражение перегружает разум.

Резюмируя, суть тех средств, которыми математики добывают факты о внешнем мире, можно сформулировать следующим образом: математика строит модели целых классов реальных явлений. Понятия, обычно идеализированные (независимо от того, почерпнуты они из наблюдений природы или являются плодами человеческого разума), аксиомы, которые также могут быть подсказаны физическими фактами или придуманы людьми, процессы идеализации, обобщения и абстракции, а также интуиция — все идет в ход при построении моделей. Доказательство цементирует элементы модели воедино. Наиболее известная модель — евклидова геометрия, но мы познакомимся со многими более изощренными и простыми моделями, рассказывающими нам гораздо больше о менее очевидных явлениях, чем это делает евклидова геометрия.

Наша цель состоит в том, чтобы показать, как прочно входит математика в современный мир не только как метод, позволяющий компенсировать несовершенство наших органов чувств, но и в гораздо большей степени как метод расширения того знания, которое человек способен обрести об окружающем мире. Как сказал Гамлет, «и в небе и в земле сокрыто больше, чем снится вашей мудрости, Горацио». Нам необходимо выйти за пределы знания, добытого чувственным опытом. Суть математики в отличие от чувственного восприятия состоит в том, что, опираясь на человеческий разум и способность человека к рассуждениям, она порождает знание о реальном мире, которое среднему человеку, даже если он воспитан на рациональной западной культуре, кажется полученным исключительно путем чувственного восприятия.