Важно понимать, что вероятности в квантовой физике — это не то же, что вероятности в Ньютоновой физике или в повседневной жизни. Мы можем это понять, сравнив выстроенные модели равномерного потока бакиболов, выпущенных в экран, с моделью отверстий, выстроенных исходя из того, что игрок в дартс целился в яблочко. Если конечно игроки не пили уж слишком много пива, шансы дротика воткнуться недалеко от центра очень велики, и по мере удаления от центра уменьшаются. Как и с бакиболами, любой из дротиков может воткнуться куда угодно, и, со временем, модель отметин от дротиков, отражающая вероятность, лежащую в своей основе, построится. В повседневной жизни, в такой ситуации мы можем сказать, что дротик имеет определенную вероятность приземления в разных местах, но мы говорим так, только потому (в отличие от случая с бакиболами), что наше знание об условиях его запуска неполные. Мы могли бы улучшить описание предмета, если бы знали точно как именно игрок запустил дротик — его угол, вращение, скорость и т. д. В принципе, тогда мы смогли бы предсказать, где приземлится дротик с той точностью, с которой хотели бы. Использование нами условий вероятности, для описания результата событий в повседневной жизни, таким образом, является не отражением глубинной сущности процесса, но лишь нашего невежества в некоторых его аспектах.
Вероятности в квантовых теориях совсем другие. Они отражают фундаментальную случайность в природе. Квантовая модель природы включает в себя принципы, которые не только противоречат нашему повседневному опыту, но и нашему интуитивному восприятию реального. Те, что находят эти принципы странными или неправдоподобными находятся в хорошем обществе, обществе великих физиков, таких как Эйнштейн и даже Фейнман, чьё описание квантовой теории мы совсем скоро представим. Фейнман, в действительности, как-то написал: «Думаю, я могу спокойно заявить, что никто не понимает квантовой механики». Но квантовая физика согласуется с наблюдениями. Ни одного провального теста, а тестировали её больше, чем любую другую научную теорию.
В 1940-х Ричарда Фейнмана потрясло озарение в понимании разницы между квантовым и Ньютоновым мирами. Фейнмана заинтриговал вопрос, как возникает модель интерференции в эксперименте с двумя отверстиями. Напомним о том, что полученная итоговая модель после того, как мы выстрелили молекулами, когда обе прорези открыты, не есть сумма моделей, если провести эксперимент дважды: один раз только с открытой первой прорезью, а второй — только со второй. Напротив, когда обе прорези открыты, мы находим череду светлых и тёмных полос. Последние это те области, куда не приземлилась ни одна частица. Это означает, что частицы, которые должны были бы попасть в область темной полосы, в случае если, скажем, открыта одна прорезь, там не оказываются, если открыты обе прорези. Как будто где-то на середине своего пути к экрану частицы получают информацию про обе прорези. Такое поведение решительно отличается от того, как всё обстоит в повседневной жизни, в которой мяч проследует сквозь одну из прорезей и на него никак не повлияет состояние второй.