Великий замысел (Хокинг, Млодинов) - страница 31

Согласно Ньютоновской физике, и согласно тому, как эксперимент прошёл бы, если бы мы проделали то же самое с футбольными мячами вместо молекул, каждая частица следует единственному строго определённому маршруту от источника к экрану. В такой картине не находится места обходному пути, которым частица по пути посещает окрестности обеих прорезей. Однако, согласно квантовой модели, у частицы будто бы и нет точного местоположения в то время, пока она находится между начальной и конечной точками пути. Фейнман понимал, что не нужно принимать это за отсутствие пути у частиц, пока они следуют от источника к экрану. Совсем наоборот, это могло бы значить, что частицы проходят всеми из возможных путей связывающих эти точки. Вот, утверждал Фейнман, что отличает квантовую физику от Ньютоновой. Эта история с двумя прорезями имеет значение, потому что вместо того, чтобы проследовать единственным определённым путём, частицы прошли всеми, да ещё и за раз. Звучит как научная фантастика, но это не так. Фейнман сформулировал математическое выражение — «Фейнманову сумму предысторий», отражающее эту идею и воспроизводящее все законы квантовой физики. У Фейнмана в теории математическая и физическая картины расходились с исходными формулировками квантовой физики, но предсказания были такими же.

В эксперименте с двумя прорезями идеи Фейнмана сводятся к тому, что частицы выбирают пути, которые ведут либо сквозь одну прорезь, либо сквозь вторую; пути, что ведут сквозь первую прорезь, затем обратно через вторую, и вновь снова через первую; пути, ведущие в ресторан, где подают креветки в соусе карри, затем к Юпитеру, закручиваясь вокруг него несколько раз перед возвращением обратно; и даже пути, что ведут через Вселенную и обратно. Это, по мнению Фейнмана, объясняет, как частица получает информацию о том, какие прорези открыты — если прорезь открыта, частица направляется сквозь неё. Когда обе прорези открыты, пути частиц, путешествующих через одну прорезь, могут пересекаться с путями через вторую, вызывая тем самым интерференцию. Быть может это прозвучит невероятно, но для нынешней фундаментальной физики в целом, и для этой книги в частности, теория Фейнмана оказалась много полезнее, чем оригинальная.

Фейнмановское видение квантовой реальности является ключевым в понимании теорий, которые мы скоро представим, поэтому стоит потратить некоторое время на то, чтобы понять, как там всё устроено. Представьте себе простой процесс, в котором частица из пункта А начинает своё свободное движение. В Ньютоновой модели эта частица проследует по прямой. По истечении некоторого определённого времени мы обнаружим частицу в определенном пункте В, находящимся на этой прямой. В модели Фейнмана квантовая частица проводит выборку всех путей, соединяющих пункты А и Б, составляя при этом число, называемое фазой для каждого пути. Эта фаза представляет собой такое положение в волновом цикле, в котором волна находится либо на верхнем, либо на нижнем пике, или где-то посередине. Формула Фейнмана по математическому расчёту этой фазы показывает, что когда вы складываете вместе волны всех путей, вы получаете «амплитуду вероятности» достижения частицей из пункта А пункта Б. А затем квадрат амплитуды вероятности даёт конечную вероятность достижения пункта Б.