Великий замысел (Хокинг, Млодинов) - страница 33

Теперь, когда у нас есть мнение о Фейнмановском подходе к квантовой физике, пришло время исследовать другой ключевой квантовый принцип, который мы будем использовать позже — принцип, что наблюдение системы должно менять ее поведение. Можем ли мы, как мы делаем, когда у нашей начальницы на подбородке пятно горчицы, осторожно наблюдать, но не вмешиваться? Нет. Согласно квантовой физике, Вы не можете «просто» наблюдать за чем-либо. Таким образом, квантовая физика признает, что, чтобы произвести наблюдение, Вы должны взаимодействовать с наблюдаемым Вами объектом. Например, чтобы видеть объект в традиционном смысле, мы светим на него светом. Освещение тыквы окажет на нее, конечно, не большой эффект. Но освещение даже тусклым светом крошечной квантовой частицы — то есть, стрельба в нее фотонами — действительно имеет ощутимый эффект, и опыт показывает, что это изменяет результаты эксперимента точно так, как описывает квантовая физика.

Предположим, что, как и раньше, мы направляем поток частиц на барьер в эксперименте с двойной прорезью и собираем данные о первом миллионе прошедших частиц. Когда мы определяем местоположение ряда частиц, оказавшихся в различных точках обнаружения, данные сформируют представленную картину интерференции, и когда мы добавим фазы, связанные со всеми возможными путями частицы от отправной точки А до ее точки обнаружения B, мы обнаружим, что вычисленная нами вероятность попадания в различные точки согласуется с этими данными.

Теперь предположим, что мы повторяем эксперимент, на этот раз, освещая прорези светом так, чтобы зафиксировать промежуточный пункт C, через который прошла частица. (C является положением либо одного разреза, либо другого). Это называют информацией «выбора пути», потому что она говорит нам, следовала ли каждая частица от А к прорези 1 и к B, или от А к прорези 2 и к B. Так как мы теперь хорошо знаем, через какую прорезь проходит каждая частица, наша сумма для этой частицы будет теперь включать только пути, которые проходят через прорезь 1, либо только пути, которые проходят через прорезь 2. Она никогда не будет включать и пути, проходящие через прорезь 1, и пути, проходящие через прорезь 2. Поскольку Фейнман объяснил картину интерференции, указав, что пути, которые проходят через одну прорезь, сталкиваются с путями, которые проходят через другую, если Вы включаете свет, чтобы определить, через какую прорезь проходят частицы, тем самым исключая другой вариант, Вы заставите картину интерференции исчезнуть. И действительно, если этот эксперимент выполнить, включение света изменяет результаты с картины интерференции на картину, подобную этой! Кроме того, мы можем изменять эксперимент, используя очень слабый свет, чтобы не все частицы взаимодействовали со светом. В этом случае мы можем получить информацию о выборе пути только для некоторого подмножества частиц. Если мы затем разделим данные о прибытии частицы согласно тому, получали ли мы информацию о выборе пути или нет, мы обнаружим, что данные, имеющие отношение к подмножеству, для которого у нас нет никакой информации о выборе пути, сформируют картину интерференции, а подмножество данных, имеющих отношение к частицам, для которых у нас есть информация о выборе пути, интерференции не покажет.