Молекулы (Китайгородский, Ландау) - страница 37

? Оказывается, в 1 см>3 при 0°С и 760 мм рт. ст. находится 2,7*10>19 молекул. Это огромное число. Чтобы вы почувствовали, сколь оно велико, приведем такой пример. Положим, что газ удаляется из маленького сосудика объемом 1 см>3 с такой скоростью, что в каждую секунду уходит миллион молекул. Нетрудно подсчитать, что сосуд полиостью освободится от газа через миллион лет!

Закон Авогадро указывает, что при определенных давлении и температуре отношение числа молекул к объему, в котором они заключены, >N/>V, есть величина, одинаковая для всех газов.

Так как плотность газа ρ = >Nm/>V, то отношение плотностей газов равно отношению их молекулярных масс:

Относительные массы молекул могут быть поэтому установлены простым взвешиванием газообразных веществ. Такие измерения сыграли в свое время большую роль в развитии химии. Из закона Авогадро следует также, что для моля любого вещества, находящегося в состоянии идеального газа, ρV = kN>AT, где к - универсальная постоянная (она носит имя замечательного немецкого физика Людвига Больцмана), равная 1,38.10>-16эрг/. Произведение R=kN>A называют универсальной газовой постоянной.

Закон идеального газа записывают часто как

ρV = μRT,

где μ - количество вещества, выраженное в молях. Это уравнение часто используется на практике.

Скорости молекул

Теория указывает, что при одной температуре средние кинетические энергии молекул mv>2>ср/2 одинаковы. При нашем определении температуры эта средняя кинетическая энергия поступательного движения молекул газа пропорциональна абсолютной температуре. Комбинируя уравнение идеального газа и уравнение Бернулли, найдем

Измерение температуры термометром, заполненным идеальным газом, придает этой мере простой смысл: температура пропорциональна среднему значению энергии поступательного движения молекул. Поскольку мы живем в трехмерном пространстве, про точку, движущуюся как угодно, можно сказать: она имеет три степени свободы. Значит, на одну степень свободы движущейся частицы приходится >кТ/>2 энергии.

Определим среднюю скорость молекул кислорода при комнатной температуре, которую мы для круглого счета примем в 27°С=300 К. Масса одной молекулы кислорода равна >32/>(6*10>23>). Простое вычисление даст м>ср = 4,8*10>4 см/с, т.е. около 500 м/с. Существенно быстрее движутся молекулы водорода. Их массы в 16 раз меньше и скорости в

больше, т. е. при комнатной температуре составляют около 2 км/с. Прикинем, с какой тепловой скоростью движется маленькая? видимая в микроскоп частичка. Обычный микроскоп позволяет увидеть пылинку диаметром в 1 мкм (10