Испробовав возможные варианты упаковки для всех семи осевых систем, Браве вывел 14 решеток. Мы приводим их здесь в нашем современном атомистическом изображении.
Если у куба отрезать углы, возникнут новые грани, в данном случае это будут грани октаэдра
Рассматривая решетки Браве внимательней и пробуя мысленно построить из них кристаллы, вы, вероятно, увидите, как можно провести в них плоскости и оси симметрии. Эти возможности сразу расширятся, если мы в одной из элементарных ячеек образуем новые грани. Возьмем куб (естественно, мысленно!), поставим его на угол и обрежем (все так же мысленно) все углы, тогда у него образуются совершенно новые треугольные грани. А из квадратных граней возникнут восьмиугольники: тем самым появятся новые мотивы симметрии.
Анализ элементов симметрии в каждой из осевых систем кристаллических решеток приводит к возникновению 32 классов симметрии. Все многообразие минералов в природе подразделяется на основе 32 классов симметрии. Вооруженные этими знаниями, задумаемся о классификации пяти тел Платона. То, что куб, с его тремя равными осями и тремя прямыми углами, относится к кубической осевой системе (сингонии), не нуждается в доказательстве. В рамках более детального подразделения он принадлежит пентагон-тетраэдрическому классу симметрии (К кубической системе относятся 5 из 32 классов кристаллографической симметрии. К ним принадлежат 5 разновидностей куба, различающихся по симметрии. Наиболее симметричный куб имеет 9 плоскостей симметрии, 3 четверные, 4 тройные и 6 двойных осей симметрии.Наименее симметричный куб, о котором и идет речь в тексте, обладает лишь тремя двойными и четырьмя тройными осями симметрии. - Прим. ред). Мы не станем здесь приводить названий других классов из-за их сложности. Однако обратите внимание на термин «тетраэдрический», так как тетраэдр - одно из Платоновых тел.
В каждом кубе можно расположить пару тетраэдров
А если у вас хорошая память, вы вспомните и пентагондоде-каэдр, также входящий в этот класс симметрии. На картинке хорошо видно, как тетраэдр можно образовать из куба. Остальные Платоновы тела также относятся к кубической системе. Древние греки, надо думать, ужасно расстроились бы, знай они, что такой прозаический минерал, как серный колчедан, имеет ту же симметрию, что и их «совершенные» тела.
Не знаю, милый читатель, был ли у вас в детстве калейдоскоп, но если нет, то что-то безвозвратно прошло мимо вас... Калейдоскоп - это трубка, глядя в которую вы видите фантастически прекрасный узор из разноцветных многоугольников. Стоит повернуть игрушку, как внутри послышится легкий шорох и возникнет новый орнамент. И так при каждом повороте, и всякий раз новый узор - один неожиданней и красивее другого.