Лекции по физике 4 (Фейнман) - страница 25

Полное число молекул, проходящих через поверхность за время t, равно числу молекул, способных достигнуть поверхности, а это молекулы, проходящие к поверхности с расстояния ut. Таким образом, число молекул, достигающих площадки, определяется не просто числом молекул, движущихся с дан­ной скоростью, а равно этому числу, отнесенному к единице объема, и умноженному на расстояние, которое они пройдут, прежде чем достигнут площадки, сквозь которую они, по-ви­димому, должны пройти, а это расстояние пропорционально и. Значит, нам предстоит вычислить интеграл от произведения и на f(u)du, взятый от и до бесконечности, причем мы уже зна­ем, что этот интеграл обязательно должен быть пропорционален ехр(-mu>2/2kT), а постоянную пропорциональности еще надо определить:


Если теперь продифференцировать интеграл по и, то мы получим подынтегральное выражение (со знаком минус, по­тому что и — это нижний предел интегрирования), а диффе­ренцируя правую часть равенства, мы получим произведение и на экспоненту (и на некоторую постоянную). Сократим в обеих частях и, и тогда

Мы оставили в обеих частях равенства du, чтобы помнить, что это распределение; оно говорит нам об относительном числе молекул, имеющих скорость между uи u+du.

Постоянная С должна определиться из условия равенства интеграла единице в согласии с уравнением (40.5). Можно доказать, что

Используя это обстоятельство, легко найти С=Ц(m/2pkT).

Поскольку скорость и импульс пропорциональны, можно утверждать, что распределение молекул по импульсам, отне­сенное к единице импульсной шкалы, также пропорционально ехр(-к.э./kT). Оказывается, что эта теорема верна также в теории относительности, если только формулировать ее в тер­минах импульсов, тогда как в терминах скоростей это уже не так; поэтому сформулируем все в терминах импульсов:

f(p)dp=ce>->к.э.>/>kTdp. (40.8)

Это значит, что мы установили, что вероятности, определяе­мые энергиями разного происхождения (и кинетической и по­тенциальной), в обоих случаях выражаются одинаково: ехр(-энергия/kT); таким образом, наша замечательная теорема приобрела форму, весьма удобную для запоминания.

Однако пока мы говорили только о «вертикальном» распре­делении скоростей. Но мы можем спросить, какова вероятность того, что молекула движется в другую сторону? Конечно, эти распределения связаны друг с другом и можно получить пол­ное распределение, исходя из какого-то одного, ведь полное распределение зависит только от квадрата величины скорости, а не от ее z-составляющей. Распределение по скоростям не должно зависеть от направления и определяться только функ­цией u