Солнечный луч (Барабой) - страница 55

Наиболее существенный вклад в развитие квантовой теории света был внесен А. Эйнштейном. По его предложению, кванты света получили название фотонов. Величина и энергия фотона возрастают при увеличении частоты и уменьшении длины волны света

Е = h,

где Е — энергия кванта; h — коэффициент, так называемая постоянная Планка, имеющая значение 6,6·10>27 эрг/сек; — частота световых колебаний.

Лучи света, падая на поверхность некоторых металлов, выбивают из нее электроны (фотоэлектрический эффект). Количество выбитых электронов уменьшается по мере ослабления интенсивности падающего света. Но одни лучи при любой интенсивности света дают фотоэффект, другие, более длинноволновые, не дают его даже в том случае, если мощность их потока увеличена во много раз. Объяснить эти явления волновая теория не могла. Зато представление о свете как о потоке корпускул оказалось очень удобным для объяснения: одни частицы света достаточно велики для того, чтобы вызвать фотоэлектрический эффект, другие, меньшие по размерам, не могут выбить из атома электрон. Реакция, как установил Эйнштейн, идет по такому типу: одна световая частица — один выбитый электрон; при изменении интенсивности света изменяется количество элементарных реакций. Когда же величина корпускулы недостаточна для выбивания электрона, этот «недостаток» света нельзя восполнить увеличением его интенсивности.

Чтобы примирить «новорожденную» квантовую теорию с явлениями дифракции и интерференции света, находившими дотоле чисто волновое объяснение, Эйнштейн предположил, что световые волны очень слабы («волны-призраки»). Роль их сводится к переносу и распределению фотонов в пространстве, что и отражается в явлениях дифракции и интерференции света. Эта гипотеза в дальнейшем (1923—1924 гг. и 1951 —1952 гг.) была развита французским физиком Луи де Бройлем и существует поныне как один из вариантов объяснения единства волновой и корпускулярной (квантовой) природы света. Согласно этой гипотезе, световая волна очень малой амплитуды ведет и направляет частицу, или квант, представляющую собой область волны с высокой концентрацией энергии.

Другое, статистическое объяснение единства волновых и корпускулярных свойств света, выдвинутое немецким физиком Максом Борном и развитое датчанином Нильсом Бором, немецким физиком Вернером Гейзенбергом, пользуется в наши дни большим признанием Это направление начало свое триумфальное развитие с создания Н. Бором в 1913 г. теории строения атома.

Лучи, исходящие от раскаленных твердых и жидких тел или от газов под высоким давлением, образуют непрерывный спектр в виде сплошной полосы, в котором лучи с волнами различной длины непрерывно переходят один в другой. Иной вид имеют спектры светящихся газов. Они состоят из отдельных резких линий, отделенных друг от друга широкими темными промежутками. Эти спектры, называемые линейчатыми, образуются при излучении света отдельными атомами. Очевидно, атомы каждого элемента излучают свет лишь некоторых частот, т. о. кванты определенной величины.