Космос — землянам (Береговой) - страница 13

Откуда же черпают рентгеновские источники колоссальную энергию излучения? Основным условием превращения нормальной звезды в нейтронную считается полное затухание в ней ядерной реакции. Поэтому ядерная энергия исключается. Тогда, может быть, это кинетическая энергия быстро вращающегося массивного тела? Действительно, она у нейтронных звезд велика. Но и ее хватает лишь ненадолго.

Большинство нейтронных звезд существует не поодиночке, а в паре с огромной, различимой в телескоп звездой. В их взаимодействии, как полагают теоретики, и скрыт источник могучей силы космического рентгена. Звездный дуэт связан не только невидимыми узами. С поверхности оптической звезды к ее небольшой, но массивной и сверхплотной соседке, обладающей к тому же сильным магнитным полем, постоянно тянется струя газа. Она образует вокруг нейтронной звезды плоский газовый диск. У магнитных полюсов нейтронного шара вещество диска выпадает на его поверхность, а приобретенная при этом газом энергия превращается в рентгеновское излучение. Учитывая огромную силу притяжения нейтронной звезды, а следовательно, и скорость падающего на нее вещества, нетрудно представить, какая колоссальная энергия при этом выделяется. Предложенный механизм, называемый аккрецией, хорошо объяснил многие особенности рентгеновских источников.

Теория компактных рентгеновских источников в двойных системах получила экспериментальное подтверждение. С борта спутника «Коперник» удалось проследить за выходом рентгеновского пульсара в созвездии Геркулеса из полосы затемнения его оптической звездой. Все событие длилось несколько десятков секунд. Так быстро вынырнуть из тени мог только объект, размеры которого не превышают пять тысяч километров. Объем окружающего нейтронную звезду газового диска неплохо соответствует этой величине.

Свой сюрприз преподнес и «Космос-428». Его аппаратура не только обнаружила в небе новые источники невидимого глазом излучения, но и открыла совсем неизвестное ранее явление — рентгеновские вспышки. «Космос-428» засек их сразу же, в первый день работы на орбите. Всего за полдня он зарегистрировал около двадцати всплесков, каждый из которых длился не более секунды, а мощность излучения при этом возрастала в десятки раз. Так вслед за квазарами, пульсарами, космическими мазерами и прочими астрономическими новинками в небесных каталогах появились барстеры — источники рентгеновских вспышек.

Их тоже ученые связывают с двойными системами. На одной из двух звезд — оптической — время от времени могут происходить взрывы, аналогичные солнечным вспышкам и сопровождаемые выбросами больших масс вещества. При этом продукты взрыва падают на поверхность звезды-соседки и вызывают всплески рентгеновского излучения.