Сочинения в двух томах. Том 1 (Декарт) - страница 111

, или 25; и опять-таки как единица относится к (а, или) 5, так а>2, (или) 25, относится к а>3, (или) 125; и, наконец, как единица относится к а, (или) 5, так а>3, (или) 125, относится к а>4, т. е. к 625, и т. д.: ведь когда одна и та же величина умножается на саму себя, умножение производится так же, как и тогда, когда она умножается на другую, совершенно отличную от нее величину.

Когда же теперь говорится, что, как единица относится к а, или 5, данному делителю, так В, или искомое число 7, относится к ab, или 35, данному делимому, тогда порядок является обратным и косвенным, вследствие чего искомое В не может быть получено иначе, кроме как посредством деления данного ab на а, также данное. Равным образом, когда говорится, что, как единица относится к А, или искомому числу 5, так А, или 5, искомое, относится к а>2, или 25, данному; или же как единица относится к А, (или) 5, искомому, так А>2, или 25, искомое, относится к а>3, или 125, данному, и т. д. Все это мы охватываем названием «деление», хотя следует отметить, что последние из примеров такого вида заключают в себе большее затруднение, чем первые, ибо в них чаще встречается искомая величина, которая поэтому предполагает многие отношения. Ведь смысл этих примеров тот же самый, как если бы было сказано, что надо извлечь квадратный корень из а, или <из> 25, либо кубический из а>3, или из 125, и т. д.; такой способ выражения употребителен у счетчиков. Или, если объяснить их также в терминах геометров, это то же самое, как если бы было сказано, что надо найти среднюю пропорциональную между той принятой величиной, которую мы называем единицей, и той, которая обозначается а>2, либо две средние пропорциональные между единицей и а>3, и т. д.

Из этого легко сделать вывод о том, каким образом двух названных действий достаточно для отыскания любых величин, которые должны быть выведены из других величин благодаря какому-либо отношению. После того как мы поняли это, нам следует изложить, каким образом эти действия должны быть рассмотрены воображением и каким образом они должны также предстать перед глазами, для того чтобы затем мы наконец объяснили их использование, или применение.

Если нужно произвести сложение или вычитание, мы представляем себе предмет в виде линии или в виде протяженной величины, в которой должна быть рассмотрена только длина: действительно, если нужно прибавить линию


мы прикладываем одну линию к другой под прямым углом таким образом:

и получается прямоугольник



Наконец, при делении, в котором дан делитель, мы воображаем, что делимая величина представляет собой прямоугольник, одна сторона которого является делителем, а другая — частным; так, если прямоугольник ab нужно разделить на а,