Итак, круглая форма горизонта сама по себе еще не доказывает, что Земля кругла!
2. Где? – За полярным кругом.
Когда? – 21 декабря, около 12 часов дня, когда зимнее солнце лишь на мгновение показывается над горизонтом, чтобы тотчас же скрыться снова.
Действительно, тот момент есть «утро», так как совпадает с восходом солнца, но в то же время и вечер, так как совпадает с заходом солнца. Безусловно, это и полдень – 12 часов дня, и, конечно, рассвет, так как, пока солнце еще не выйдет над горизонтом, длится утренняя заря. Итак, это – «рано утром, вечерком, в полдень, на рассвете».
3. Мы знаем из условия задачи, что длина ног Эзопа равна 7 дюймам (голова) плюс длина половины туловища. Известно еще, что длина туловища равна длине ног плюс 7 дюймов, откуда длина ног равна длине туловища без 7 дюймов. Значит:
>1/>2 длины туловища + 7 дюймов =длина туловища – 7 дюймов.
Таким образом, туловище длиннее >1/>2 туловища на 14 дюймов, откуда >1/>2 туловища равна 14 дюймам, а все туловище – 28 дюймам. Прибавив длину головы и ног, т. е. туловища, равного 28 дюймам, получим рост Эзопа: 56 дюймов, или 2 аршина.
4. Достаточно разогнуть три кольца одной цепи, и полученными кольцами можно соединить концы остальных четырех.
5. Существует только один способ:
55: 5 + 5 = 16.
6. Толщина слоя мякоти равна поперечнику косточки. Значит, поперечник вишни в 3 раза больше поперечника косточки. Отсюда объем вишни больше объема косточки в З × З × З = 27 раз. И следовательно, объем мякоти больше объема косточки в 27 – 1 = 26 раз.
7. Окружность большой дыни (72 см) превышает окружность меньшей (60 см) в >24/>20, т. е. в 1>1/>5 раза. Таково же и отношение ее поперечника к поперечнику меньшей дыни. Значит, по объему первая дыня больше второй в
Если меньшая дыня стоит 25 рублей, то большая должна стоить 25 × 216: 125 = 216: 5 = 43 руб. 20 коп., между тем ее продают всего за 40 руб. Ясно, что ее купить выгоднее, чем меньшую.
8. Затычка искомой формы изображена на рис. 4. Вы можете заткнуть ею и квадратное, и круглое, и крестообразное отверстие.
Рис. 4
9. Модель весом 1 кг гораздо выше стакана, потому что, как это ни неожиданно, она имеет высоту 1>1/>2 метра! В самом деле, модель меньше самой башни по объему во столько раз, во сколько 1 кг меньше 8 000 000 кг, т. е. в 8 000 000 раз. Значит, высота модели меньше высоты башни в такое число раз, которое, будучи дважды умножено само на себя, составит 8 000 000. Этому условию удовлетворяет число 200. Разделив высоту Эйфелевой башни, 300 метров, на 200, получим 1>1/>2 метра. Результат довольно странный.