А именно: целое общество непосвященных в арифметические тайны гостей вы можете поразить следующим фокусом. Пусть кто-нибудь напишет на бумажке, секретно от вас, какое хочет трехзначное число и затем пусть припишет к нему еще раз то же самое число. Получится шестизначное число, состоящее из трех повторяющихся цифр. Предложите тому же товарищу или его соседу разделить – по-прежнему секретно от вас – это число на 7, причем вы заранее предсказываете, что остатка не получится. Результат деления передается соседу, который по вашему предложению делит его на 11; и хотя вы не знаете делимого, вы все же смело утверждаете, что и оно разделится без остатка. Полученный результат вы просите передать следующему соседу, которого просите разделить это число на 13 – деление снова выполняется без остатка, о чем вы заранее предупреждаете. Результат третьего деления вы, не глядя на полученное число, вручаете первому товарищу со словами:
– Вот число, которое вы задумали!
Этот красивый арифметический фокус, производящий на непосвященных впечатление волшебства, объясняется очень просто: вспомните, что приписать к трехзначному числу его само значит умножить его на 1001, т. е. на произведение 7 × 11 × 13. Шестизначное число, которое ваш товарищ получит после того, как припишет к задуманному числу его само, должно будет поэтому делиться без остатка и на 7, и на 11, и на 13, а после деления последовательно на эти три числа (т. е. на их произведение – 1001) должно снова дать первоначальное число.
Не вправе ли мы после сказанного приравнять число Шехеразады к тем чудесам волшебных арабских сказок, которым мы дивились в детстве? Разница лишь в том, что арифметическое чудо имеет естественное объяснение, а чудеса Востока непостижимы, – да еще и в том, что наше чудо действительно существует, а чудеса волшебных сказок вымышлены…
После сказанного о числе 1001
для вас уже не будет неожиданностью увидеть в витринах нашей галереи число 10101. Вы догадаетесь, какому именно свойству число это обязано такою честью. Оно, как и число 1001, дает удивительный результат при умножении, но не трехзначных, а двузначных чисел: каждое двузначное число, умноженное на 10101, дает в результате само себя, написанное трижды. Например: 73 × 10101 = 737373; 21 × 10101 = 212121. Причина уясняется из следующей строки:
Можно ли проделывать с помощью этого числа фокусы необычайного отгадывания, как с помощью числа 1001? Конечно, и здесь даже возможно обставить фокус эффектнее, разнообразнее, если иметь в виду, что 10101 есть произведение четырех простых чисел: